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Abstract: In the present study, we extended the work that was published mn performing statistical modeling on
the breast cancer data containing patients in two different treatments, namely radiation plus tamoxifen and
tamoxifen alone and compared the results and identified the attributable variables along with interactions that
relates to reoccurrence of breast cancer based on the consistent results obtained from accelerated failure time
model and cox proportional hazard model where interactions of attribute variables are introduced. Cox
proportional hazard model 1s alse chosen over accelerated failure time model to calculate the appropriate
survival curves of relapse time for patients in different treatment groups. In addition, we have developed and

applied the cure rate model which gives a better insight on the cure rate of the two breast cancer treatments from

a different perspective.
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INTRODUCTION

In the reoccurrence of breast cancer, there are many
factors that might contribute or associated with it and a
significant amount of studies have been published
(Freedman et al., 2009, Brawley, 2009, Eleri and Gabriel,
2008; Habibi et al., 2008) to determine which factors or
attributable variables are significantly contributing in
predicting the relapse time and breast cancer therapy. The
purpose of this study is to identify the significant
attributable variables as well as all possible interactions
among those variables and also to construct a statistical
model to predict the relapse time as a fimction of those
attributable variables and interactions so that given the
information of the attributable vanables, we will be able to
identify how much time it takes before the reoccurrence of
breast cancer for a specific patient. Once, the relapse time
15 obtained from the model with respect to the single
treatment of tamoxifen alone and the model with respect
to combined treatment of tamoxifen and radiation, it can
provide very important guidance on which treatment to
choose to increase reoccurrence time (Hancke et af., 2009,
Kimmick et al., 2009, Throckmorton and Esserman, 2009,
Hershman et al, 2008; Schnitt and Harris, 2008,
Trent et al., 2007). Three different kinds of statistical
models are presented: a parametric regression model
which assumes certain probabilistic distribution for the
error term; a semi-parametric model-cox proportional
hazard model which assumes a proportional hazard and a
cure rate model which takes mto consideration cure rate,

ie, part of the patients that will never experience
reoccurrence of breast cancer and for those patients who
are subject to recccurrence, various parametric models are
constructed to predict the relapse time.

MATERIALS AND METHODS

Between December 1992 and June 2000, a total
of 769 women were enrolled and randomized
(Fyles et al, 2004) of which 386 received combined
radiation (Taylor and Kim, 1993) and tamoxifen (RT+Tam)
and the rest, 383, were assigned to tamoxifen-alone arm
(Tam). The last follow up was conducted in the summer of
2002. The study introduced only those 641 patients that
were errolled at the Princess Margaret Hospital: 320 were
treated with radiation and tamoxifen and 321 were treated
with tamoxifen only. A summary of the actual data used in
the present study 1s shown in Fig. 1.

The proposed statistical models in the present study
are constructed for patients in RT+Tam Group and Tam
group, respectively. Information concerning potential
prognostic factors (attributable variables) are pathsize

Total number of
paticnts 641

Patients with
RT+Tam 320

Fig. 1: Patients treatment data
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(size of tumor in cm); hist (Histology: DUC = Ductal,
LOB = Lobular, MED Medullar, MIX = Mixed,
OTH Other);, hrlevel (Hormone receptor level:
NEG = Negative, POS= Positive); hgb (Hemoglobing L™,
nodediss (Whether axillary node dissection was done:
Y = Yes, N = No); age (Age of the patient in years). The
dependent variable or response variable 1s the relapse

time (in years) of a given patient.

One important question that we will address is that
which of these attributable variables are significantly
contributing to the response variable - the relapse time. In
addition, identify all possible contributing to relapse time.

ACCELERATE FATLURE TIME MODEL (AFT) AND
COXPROPORTIONAL HAZARD(COX-PH) MODEL

AFT model: When covariates are considered, we assume
that the relapse time has an explicit relationship with the
covariates. Furthermore, when a parametric model
(Lawless, 2003), 1s considered, we assume that the relapse
time follows a given theoretical probability distribution
and has an explicit relationship with the covariates.

Let T denote a continuous non-negative random
variable representing the survival time (relapse time 1n this
case), with probability density function (pdf) f(t) and
cumulative distribution (¢df) Ft) = Pr(T<t). We will focus
on the survival function S(t) = Pr(T=t), the probability of
being alive at t reoccurrence free mn this case. In this
model, we start from a random variable W with a standard
distribution in (-ee, +0) and generate a family of survival
distributions by introducing location and scale parameters
to relate to the relapse time as follows:

LogT=Y = ¢+oW (1)
where, o and 0 are the location and scale parameters,
respectively.

Adding covariates into the location parameter we
have:

(2

Y=logT=xp+cW
where, the error term W has a suitable probability
distribution, e.g., extreme value, normal or logistic. This
transformation leads to the Weibull, log-normal and log-
logistic models for T. This type of statistical models are
also called Accelerated Failure Time (AFT) model. More

information about AFT models can be found (Yamaguchi,
1992; Shang and Jeremy, 2002; Lawless, 2003).

Cox-PH model: An alternative approach to modeling
survival data is to assume that the effect of the covariates
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is to increase or decrease the hazard function by a
proportionate amount at all durations. Thus:

ALX) = A, (D (3)

or
AMLX) 4
In 7D =xp &)

where, A,(t) 1s the baseline hazard function or the hazard
for an individual with covariate values 0 and ¢*® 1s the
relative risk associated with the covariate values x.
Subsequently, for the survival functions:

(5)

S(tx) =8, (0

Hence, the survival function for covariates x 1s the
baseline survivor raised to a power.

Parameter estimates in the cox-PH model are obtained
by maximizing the partial likelihood as opposed to the
likelihood. The partial likelihood 1s given by:

I exp(x, B}

¥, wsanired Sy 2y, CXPUX,B)

L(B) = (6)

The log partial likelihood is given by:

I@=lgl@®= 3

{x;ﬁ—log[ 3 CXP(X,E))]} ()
In application of the Cox-PH model, we also included
the interactions of the attributable variables.

MODEL RESULTS

The major objective of applying these models is to
identify which of the six attributable variables are
significant contributing to the relapse time of breast
cancer patients receiving different treatments. The six
explanatory variables used mn the models are pathsize
(size of tumor in cm); hist (Histology: DUC = Ductal,
LOB Lobular, MED = Medullar, MIX = Mixed,
OTH Other) hrlevel (Hormone receptor level:
NEG = Negative, POS = Fositive); hgb (Hemoglobin g L™
nodediss (Whether axillary node dissection was done:
Y =Yes, N =No) age (Age of the patient in years).

The most commonly used AFT models such as
exponential, Weibull and log-normal AFT models and
Cox-PH model are applied. After running the model
including all

covariates and interactions between
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Table 1: Significant factors in parametric regression models for RT+Tam

group

RT+Tam Lognormal  Exponential ~ Weibull Cox-PH
AIC 237.64 234.49 23597 245.8
Age 0.002+ 0.008* 0.011+# 0.01%*
Pathsize 0.01* 0.0002% 0.0002*%  0.00086"
Nodediss 0.021# 0.000% 0.012# 0.012%
Hrlevel 0.027+ 0.010% 0.008* 0.016%
Agenodediss 0.037* 0.022% 0.026* 0.028+
Nodediss hrlevel 0.009+ 0.0005% 0.0008%  0.00067*
Pathsize:hrlevel 0.078 0.060 0.041* 0.099

The stars (*) in the table indicates that the wvariable is significant at
significance level of 0.05

Table 2: Significant factors in parametric regression models for Tam group

Tam Lognormal Exponential Weibull Cox-PH
AIC 439.34 439.55 440.76 525.89
Age 0.343 0.294 0.287 0.32
Hgb 0.037* 0.645 0.630 0.68
Pathsize 0.339 0316 0.300 0.33
Nodediss 0.025% 0.017% 0.020% 0.018*
Hrlevel 0.006* 0.002% 0.003* 0.002%
Age:pathsize 0.143 0112 0.106 0.120
Agemnodediss 0.038* 0.006% 0.007+ 0.0065%
Hgb:nodediss 0.054 0.077 0.079 0.075
Agehgb NA 0.131 0.128 0.150
covariates, number of parameters that drive the
attributable variables are reduced using stepwise

regression based on Arkariki Information Critria (AIC)
(Akaike, 1974), 1s a measure of the goodness of fit of an
estimated statistical model. It 18 trades off the complexaty
of an estimated model against how well the model fits the
data. Tt is given by:

AIC = -2log (likelihood)+2(ptk)

where, p is the number of parameter and k is the number
of parameters in the distribution. Statistical models with
lower AIC are preferred. Table 1 given below shows the
covariates and mteractions in the related statistical
chosen using the AIC as their
corresponding p-values for the breast cancer patients that
were treated with both radiation and tamoxifen.

As can be seen from the table, age, pathsize,
nodediss, hrlevel and the interactions between age and
nodediss and interaction between nodediss and hrlevel
are significant with respect to relapse time of breast
cancer patients who received radiation and tamoxifen. The
interaction of pathsize and hrlevel proves to be significant
orly in Weibull AFT model.

Table 2 given below address the same aspects as
Table 1, for breast cancer patients that were treated with
tamoxifen only.

For patients who received tamoxifen only, only
nodediss, hrlevel as single attributable variables are
significant with respect to relapse time in this group. It is
worth noticing that although age itself is not significantly

models well as

39

contributing to relapse time, the interaction between age
and nodediss is significant. hgb is found to be significant
only in lognormal AFT model.

Comparing the results from the two treatment groups,
for each group at significance level of 0.05, the three AFT
models give almost the same results. Significant
prognostic factors for relapse time of breast cancer
patients who received combined treatment of radiation
and tamoxifen are age, pathsize, nodediss, hrlevel,
age:nodediss, nodediss:hrlevel which appears statistically
signficant m all lognormal, exponential and Weibull
regression models. Only mn Weibull regression model
pathsize: hrlevel shows significant contribution to the
model. For patients who are in Tam arm, all three models
show nodediss, hrlevel and age:nodediss are significant
contributing, only m lognormal regression model hgb
shows significance.

Furthermore, significant prognostic factors identified
using Cox-PH model confirm our conclusion. There are six
significantly contributing variables two of which are
interactions for RT+Tam arm and three significantly
contributing variables one of which 1s interaction for Tam
arm.

Next the predicted survival curves of the three AFT
models and Cox-PH model for each arm are compared to
Kaplan-Meier survival curve along with 95% confidence
band to determine the best predicting model for relapse
time and the results will be shown and discussed.

Kaplan-Meier vs. Parametric survival analysis: From the
above four models, identified the significant
attributable variables and interactions between them that
contributes to the relapse time of breast cancer patients in
two different treatment groups. To investigate which
model gives the best fit of the relapse time of breast
patients i those two groups, graphical
presentation would be a useful tool. In this study, Kaplan-
Meier curve as a commonly used nonparametric survival
curve and its 95% confidence limits are plotted against the
survival curves obtained from the four models discussed
above to see which model gives the closest curve to
Kaplan-Meier survival curve.

Kaplan-Meier equivalent to the empirical
distribution when we have censored data and its estimator
of the survival function is estimated by:

we

cancer

is

n,—d

s()=1I1

PRI

where, 3(t) 15 the probability that an mdividual wall
not have reoccurrence of breast cancer after time t and
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ty=t=t.=. =t are the observed times watil reoccurence
for a sample size rn; fyis the mumber of aurvvors just prior
to time t, and d iz the romber of deaths at time f,.

Using the breast cancer data for patients from
RTHTam arm, the Kaplanehleler curves dong with its25%
confidence limits aganst the lognorma AFT model are
plotted in Fig 2.

&g canbe seen from Fig 2, for the second wear, third
yea atid around the sixth year | the survival corve from
lognormal AFT model runs out of the 93% confidence
batnd of Eaplary Meier curve.

For exponential AFT model, the same graplica
represertation is giveninFig 3 below. Form this Fig, 3 the
surdva curve estimated from the exponential AFT model
iz off the 953% confidence band from year 1 to year 4 and
from year 5 to yearf.

Figure 4 shows the graph of swvival curve obtained
from the Weitndl AFT model it desiates from the 95%

g 0.3 "
E 1.6
E 0.4
0.4
1: Eaplan-Meier
2: Logpommal
0.y
b ) 4 8 B 1o
Tine (sec)

Fig 2: Survival curve from lognoemal regression moodel
vs Haplan-hieier swdwe cwwe and its 95%

cotfidence interval for ET+T am
10,
2
g 0.3 1
o 06
&,
E 0.4
02
1: Faplar-Iileier
2 rhial
0.0 Eepore
1] 2 4 <] ] 10
Time (zec)

Fig 3 Survival curwe from exponential regyession model
va Kaplan-Meier swwwve cwwve and its 953%
corfidence interval for ET+HT am

cotfidence band of the Kaplan-Deder in a similar pattern
asthe survival corve of the exponential AFT model.

Howrewer, in Fig 5 which shows the sudval curve
ohtained from the Cox-FH model, it is clear that most of
the tite the surrival oarve lies within the 253% confidence
batid of Faplare Ileier o,

Thus, we can conclude from the abowe analysis that
Cox-PH model with interacti ons gives a better prediction
of relapse possibility of treast cancer patierds in RT+T am
atmn comparing to the three AFT models.

Similatly, we proceed to perform a swvival analysis
of the relapse time for the patients who are treated with
tamoxwifen only. Figure 6-2 show the sordval cwrves
obtained from lognormal, exponential and Weitnall AFT
mode s [tis clear that those survival curves fall ot of the
95% corfidence limits of the Kaplan-Ieier curve most of
the time. Howewer, in Fig. 9 which shows the surdval
murve ohtaitied from the Cox-PH model with interact ons,

l'D_"'_'?-'-"{"::._"h—q_
e B S
' T
g 0.2 1.,
E 0.6
E 0.4
0.2
1: Faplan-eier
o 2 Weohill
] ) [ ] 0
Time (zec)

Fig 4 Swaval curve from Weibull regression model s

Eaplary Meier  survive owwve and its 93%
cotfi denice interseal for BT+T am
lﬂ--q#;,_
el :__: ------- 1;-'_2____
0.3 .
% 0.6+
g,
E 0.4
0.2+
1: Faplan-Iileier
2: Cox-FH
0.04
i 3 i ] ] 1n
Time [sec)

Fig 5: Bwwval cwve from Cox-PH model v Kaplan-
Ileier suveive ourve and its 95% confidenice
itterval for RT+Tam
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Fig. 6: Survival curve from lognormal regression model
vs. Kaplan-Meier survive curve and its 95%
confidence interval for Tam
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Fig. 7: Survival curve from Exponential regression model
vs. Kaplan-Meier survive cwve and its 95%
confidence mterval for Tam
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Fig. 8 Swvival curve from Weibull regression model vs.
Kaplan-Meier survive curve and its  95%
confidence interval for Tam
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Fig. 9: Survival curve from Cox-PH model vs. Kaplan-

Meier survive curve and its 95% confidence

mterval for Tam
Table 3: Reoccurrence-free possibility

Year

Groups 2 5 8
RT+Tam
K-M 0.98 0.95 0.93
Cox-PH 0.98 0.97 0.95
Tam
K-M 0.94 0.88 0.76
Cox-PH 0.97 0.92 0.84

we can see the survival curve lies within the 95%
confidence band. Therefore, we can conclude that for
patients who received tamoxifen only, Cox-PH model with
interactions gives a more precise prediction of the relapse
time than AFT model.

Since, Cox-PH model gives better prediction of
relapse possibility than AFT models for both groups, we
recommend Cox-PH model to approximate the probability
of having 2, 5 and 8-year reoccurrence-free and the results
are shown in Table 3.

Although, there congistency on identifying
significant prognostic factors for reoccurrence of breast
cancer, it can be seen from the above six graphs,
regression model might not be a good choice for
predicting purpose. Cox-PH models with interactions
show more efficiency over regression models with
respect to predicting power. So, it would be advisable to
use Cox-PH model with interactions to predict the
relapse time of a breast cancer patient given all the
information of the attributable variables. And as can be
seen form the reoccurrence-free table, patients with
combined treatments have higher possibility of free of
reoccurrence  of cancer than those with single
treatment. More information on comparing the survival
models can be obtained (Nardi and Schemper, 2003,
Orbe et al., 2002).

18



J. Applied Sci., 10 (1): 37-44, 2010

Cure rate statistical model
Model introduction: Any clinical trial consists of a
heterogeneous group of patients that can be divided mto
two groups. Those who respond favorably to the
treatment and become insusceptible to the disease are
called cured. The others that do not respond to the
treatment remain uncured. It would be of interest to
determine the proportion of cured patients and study the
causes for the failure of the treatment or reoccurrence of
the disease. Unlike the above mentioned survival
parametric regression model and semi-parametric Cox-PH
model with interactions that assume each patient 1s
susceptible to failure of treatment or reoccurrence, cure
rate statistical models are survival models consisting of
cured and wncured fractions. These models are bemng
widely used mn analyzing cancer data from clinical trials.
The first model to estimate cure fraction was developed
by Boag (1949) which is called mixture model or standard
cure rate model. Further development of this model can
be found (Peng et af., 1998, Goldman, 1984; Farewell,
1982, Ghitany et al., 1992; Theodora et al, 2008,
Fabien and Pierre, 2007; Uddin et al., 2006).

Let 1 denote the proportion of cured patients and
1-m 1s the proportion of uncured patients, then the
swrvival function for the group is given by:

SO =7 +{1-m)S,(1) (8)

where, S,(t) is the survival function of the uncured group.
Tt follows that the density function is given by:

() = n+(1-mEL0) (9)

For uncured patients, we assume that the failure time
or relapse time T follows a classical probability
distribution and also we can add the effect of covarates
into the model using the parametric survival regression
models that we studied in the previous section. For cure
rate T, it can either be assumed constant or dependent on
covariates by a logistic model, that 1s:

log(ﬁ): expix B (10)

Thus, covariates may be used either in cure rate or in
the failure time probability distribution of the uncured
patients. These different conditions will be considered in
developing the modeling process.

Estimates of parameters in the model can be obtained
by maximizing the overall likelihood fimetion given by:

L=, {d-m)f, )} {m + d-mps, )™ (D

where t; is the observed relapse time and o, is the
censoring indicator with o, =1 if t 1s uncensored and
0, =0, otherwise.

Model results for the breast cancer data: For the survival
regression part, Weibull, lognormal (Lnormal), Gamma,
generalized log-logistic (GLL), log-logistic (Llogistic),
generalized F (GF), extended generalized gamma (EGG) and
Rayleigh parametric regression are used. The following
cases encompass the above statistical analysis as set
forth.

Case 1: No covariates in T and S (t): When both cure rate
and survival curve of uncured groups are independent of
covariates. But we get very different cure rates using
different distributions which suggest the model is very
sengitive to the underlying distribution of the failure time
of uncured patients.

Case 2: No covariates in T, six single covariates in S(1):
When we consider covariates in swvival function of
uncured group, Table 4 shows there 15 some kind of
consistency of cure rate among different distribution
assurmptions.

Case 3: Six single covariates in T, six single covariates
in S (t): When we consider covariates in both cure rate
and survival function of uncured group. Although, we
add six covariates into cure rate, there is not much
improvement 1n the likelithood and sometimes the
likelihood is even lower, which suggests cure rate might
not be dependent on those covanates; instead, we can
consider it as a constant.

Case 4: No covariates in T, six single covariates and
their interactions in S,(t): Since, there 1s no significant
difference m maximum likelihood between case 2 and 3, it
shows mcluding covariates does not wmprove the model
much. Thus, in the following analysis, we consider cure
rate as a constant, 1.e., independent of those covariates.
Table 5 shows uniformity of cure rates using different
parametric regression models.

Table 4: Likelihood and cure rate with covariates in uncured survival

function
RT+Tam Tam

Models Likelihood Cure rate Likelihood Cure rate
Weibull -98.9810 0.1000 -171.2401 0.0748
Lnormal -96.6371 0.0057 -171.4864 0.0748
Gamma -95.9291 0.0064 -171.6280 0.449

GLL -96.6900 0.1000 -171.3320 0.0748
Llogistic -100.6583 0.1000 -171.6338 0.0748
GF -96.2180 0.002152 -171.9223 0.0748
EGG -95.6891 0.0038 -167.6022 0.5582
Rayleigh -117.5059 0.1000 -204.8281 0.0748
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Table 5: Likelihood and cure rate with covariates and interactions in
uncured survival function

RT+Tam Tam
Models Likelihood Cure rate Likelihood Cure rate
Weibull -100.5568 0.1000 -166.6240 0.0748
Lnormal -109.4816 0.1000 -167.8399 0.0748
Gamma -88.9750 0.1000 -167.7902 0.0748
GLL -89.3220 0.1000 -164.8092 0.0748
Llogistic -101.7427 0.1000 -165.9777 0.0748
GF -89.0793 0.1000 -164.6293 0.0748
EGG -90.5768 0.1000 -163.8507 0.0748
Rayleigh -95.4851 0.1000 -186.6157 0.0748

After computing the AIC of the above models for
each group, the smallest cne for RT+Tam is Gamma, the
smallest one for Tam 1s EGG. Hence, we choose mixture
cure model with Gamma regression for uncured RT+Tam
group and with EGG regression for uncured Tam group.
For patients who received radiation and tamoxifen, 10% of
them will be cured of breast cancer and not be subject to
reoccurrence. However, for those who received tamoxifen
alone, only 7.48% will be cured of breast cancer which
suggests that giving radiation to breast cancer patients
who teke tamoxifen could possibly decrease the
probability of reoccurrence of breast cancer.

Thus, 1t 1s clear that cure rate model 15 useful mn
identifying the cure rate of breast cancer in each treatment
group. 10% of the breast cancer patients who received
combined treatment with tamoxifen and radiation would be
cured of breast cancer and not susceptible to breast
cancer again. However, the percentage of cured patients
in tamoxifen group is only 7.48% which 18 much lower
than that of the combined treatment group. This not only
provides us insight on treatment selection with respect to
cure rate, but also gives an creditable estimation of the
percentage of cured patients.

CONCLUSION

By applymg AFT and Cox-PH models, the significant
factors and interactions that contribute to relapse time of
a breast cancer patient receiving different treatments are
identified and AFT and Cox-PH gives consistent results.
With respect to predicting survival curve, Cox-PH model
gives better fit than AFT models. Thus, given information
of covanates of a given breast cancer patient, Cox-PH
model with interactions can be applied to determine the
time before reoccurrence of breast cancer. From a different
perspective, cure rate model takes into consideration the
fact that some part of the patients are cured and will never
experience reoccurrence. It is found that cure rates for
RT+Tam and Tam groups both are mdependent of the
covariates and are different. For RT+Tam group, the cure
rate 13 0.1 which 1s higher than that of Tam group which 1s
0.0748. Thus, using the cure rate statistical model we
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conclude that patients received combined treatment of
radiation and tamoxifen are more likely to be cured of
breast cancer and less susceptible to reoccurrence of
breast cancer than those who received single treatment.
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