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Abstract: This research emphasizes the study of plate natural frequency by Genetic Programming (GP). In this
study we tried to investigate the modeling of plates and modal analysis by finite element method and FEM
software. Six parameters were used through plate modeling: length, width, thickness, poisons ratio, modulus
of elasticity and density. This study intends to estimate the natural frequency of seven different metals as
follow: high strength low alloy steel, gray iron, alumimum by alloy 1100-H14 and 2014-T0O and copper, cold
rolling steel and malleable iron, which were different for metals. After frequency estimation by fem software, 100
samples of each metal were produced and GP was used for modal training to choose the best model in metal
modeling. The mentioned model specifications have been produced mathematically. Afterwards, 100 extra
samples were produced by FEM software. Using obtamed models, all of results were tested. The error
percentage of GP models and FEM software was compared and the results were produced as diagram.
Considering spread of matters, all of stages are indicated only for high strength low alloy steel and the list of
the best GP models for another metal 1s indicated m conclusion. Fially, due to results, modal analysis

sinulation in plate natural frequency was mtroduced by GP as a new method by GP.
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INTRODUCTION

The goal of modal analysis in structural mechanics is
to determine the natural mode shapes and frequencies of
an object or structure during free vibration It 1s common
to use the Finite Element Method (FEM) to perform this
analysis because, like other calculations using the FEM,
the object being analyzed can have arbitrary shape and
the results of the calculations are acceptable. The types
of equations which arise from modal analysis are those
seen in Figen systems. The physical interpretation of
the Eigen and eigenvectors
from solving the system are that they represent the
frequencies and corresponding mode shapes. Sometimes,
the only desired modes are the lowest frequencies
because they can be the most prominent modes at which
the object will vibrate, dommating all the higher frequency
modes.

Tt is also possible to test a physical object to
determine its natural frequencies and mode shapes. This
1s called an Experimental Modal Analysis. The results of
the physical test can be used to calibrate a finite element
model to determine if the underlying assumptions made
were correct (for example, correct material properties and
boundary conditions were used).

values which come

The study field of plate natural frequency i1s much
spread. Among them, practical natural frequency analysis
of elastic plate on water (Hiroaki et al, 2001), modal
vibration analysis of metal plate by using a laser
vibrometer and POD (proper orthogonal decomposition)
method (Barrientos ef al., 2005) the finite element analysis
in plate and beam, experimental analysis of modal
interactions 1n the nonlinear vibrations of a plate,
application of high frequency barrier discharge for flat
plate drag reduction (Shatan, 2009) and calculation of
plate natural frequency by neural network (Ziaie ef al.,
2008), which has been used a three layer new elm neural
network, by 8 neurons mn input layer and & newrons in the
middle layer, Train cgb traming function, learming function
of learn P and performance evaluation see in plate
frequency calculation. Regard to investigation, it has been
tried to calculate plate natural frequency by GP.

Evolutionary algorithms are inspired by nature. The
idea is to mimic the natural evolution of the spices in order
to create a new kind of search technique that is robust
and intelligently seeks solutions m a possibly mfimte
search space (Mitchell, 1996). Some of the techniques that
are part of this branch of computer science are Genetic
Algorithm  (GA),
Evolutionary Programming (EP). Genetic Programming

Genetic Programming (GP) and
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(GP) i3 an extension to Genetic Algorithms proposed
by Koza (1994a), to  automatically extract
intelligible relationships in a system and has been used
n many applications such as symbolic regression
(Ong etal, 2005) also Koza (1992) defines GP in following
steps:

Generate an 1mutial population of random
compositions of the functions and terminals of the
problem (computer programs)

Execute each program in the population and assign
1t a fitness value according to how well it solves the
problem

Create a new population of computer programs

¢ Copy the best existing programs (reproduction)
Create new computer programs by mutation
Create new computer programs by crossover
(sexual reproduction)

Select an architecture-altering operation from the
programs stored so far

The best computer program that appeared in any
generatiory, the best-so-far solution, 1s designated as
the result of genetic programming

The GP creates a population of computer programs
with a tree structure. Randomly generated programs are
general and hierarchical, varying in size and structure. The
GPs mam goal 1s to solve a problem by searching highly
fit computer programs in the space of all possible
solutions. This aspect 1s the key for finding near global
optimum solutions by keeping many solutions that may
potentially to be close to minima (local or global). The
creation of initial population is a blind random search of
the space defined by the problem. The output of the GP is
a program rather than a quantity (Asbour ef af., 2003). The
GP has several advantages over the more conventional
multivariate analysis or distance-based classifier methods
used 1n data analysis and 1t has the potential to discover
simple rules in data that are both complex and noisy. No
assumptions of normality or independence are required
about the data to be analyzed. Tt is possible to combine
numerical, ordinal and categorical data m the same
analysis and the evolved models can easily be applied to
new data. The identification and selection of a small
subset of the available variables that has high explanatory
power are particularly useful. This research investigates
to predicting models with a new approach method called
genetic programming.

MATERIALS AND METHODS

Natural angular frequency: This study intends to
estimate the natural frequency of seven different metals
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and after frequency estimation by FEM software, 100
samples of each metal were produced and GP was used for
modal training to choose the best model in metal
modeling. The mentioned model specifications have been
produced mathematically. Afterwards, 100 extra samples
were produced by FEM software (Jahed et al, 2003).
Using obtained models, all of results were tested. For
domg of these stages of the study which have been
conducted in Sama organization (Shahrekord branch) and
also Shalud Bahonar university of Kerman, almost two
years (2007 to 2009) have been spent.

Considering a structure, if deformation mmtate, it
begins to vibrate. If there is no external force, the
structure will be under free vibration. For estimation of
structure dynamic response, vibration properties (natural
frequency and wvibration modes) are needed. These
properties are provided as below:

k¢ = w’m¢ (1)
which 1s a defined problem. Where, K, M, @ and ¢ are
stiffness matrix, structure mass matrix natural angular
frequency and wvibration mode, respectively. M and K
matrixes are estimated by matrix analysis technique. There
are many numerical techniques to solve defined problem.
Choosing the best computer technique 1s related to mass
and stiffness matrix properties, natural frequency and
vibration modes which are necessary in structure
analysis.

Structure frequency importance: Structure frequency
estimation and attached 1t to defined quantities
{or maximize them) have two advantages;, decrease of
structure vibration range and prevention of resonance in
structure dynamic response. Resonance is a condition in
which i1mtiated load 153 equal to vibration natural
frequency. So, in spite of sustaining anticipated efficiency
and performance, changing the structure dimensions or
shape change, the natural frequency and dynamic
excitation will increase and decrease, respectively. This
factor decreases stress and rise, therefore structure safety
will be provided.

Stiffness matrix and plates mass: A plate bends under
vertical loads, so we say it 1s in flexural state. Here, we will
deal shearing and flexural stresses and the strains which
are similar to beam stress and strain. Where plate analysis
1s more complex, because it 13 2-D but beam is one-
dimensional. On the other hand, metal plate is a three
dimensional shell, so metal plate analysis 1s more difficult
because m addition of shells shearing and flexural
stresses and strains, we should consider membranous
deformation strams.
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Fig. 1. Special manner of hexahedron, (a) H20 element,
(b) PBQRB rectangular pattern before bracing,
(c) restricted nodes displacement

Due to volume, finite elements have axisymetry in
plates and shell analysis such as midline plates theory.
Automatically, these special specifications include the
effects of shearing deformation and torsional stiffness. It
is assumed that all of analytical structures are made of
elasticity material with
displacements.

linear small strains and

Elements of plates in flexural state: Figure 1a shows the
main member of H20 which is defined by geometrical
mterpolated quadratics. For perceives of required
constramnts for change it to flexural elements; we make flat
cuboids with natural coordinates. Obtained element is
shown mn Fig. 1b and 18 as a rectangular pattern, PORS,
from PBQE element before constriction It must be
remembered that three nodal groups are located in angles,
but two nodal groups are in the middle of side in PQRE
element. Tn the Fig. lc, it is seen that with special
constraints instigation, we can change each group and
twin nodal to single nodal in the middle of area.

Tt is probable that isoparameter hexahedron limited,
s0 a dimension is small versus two other dimensions. In
this case, hexahedron changed to shell element or plane.
For analysis of flat plane, 1t’s necessary to limit reformed
dimensions to put them in a single area. This part
allocated to isoperimetric hexahedron (H20) that changes
to flexural tetrahedral plane, PBO8. Figure la-c show
special manner of hexahedron H20 elements, PBQE
rectangular pattern before bracing and restricted nodes
displacement.

Regarding fore mentioned descriptions, we can write
stiffness matrix in PBQS8 element as below:
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Mass matrix which is suitable for PBQR is as below:

111 111 T
M- | [[£° tjdeande -] | J[fﬁcgfﬁ} [fA+cng]\j|aaandc
(3)

Equivalent panel loads which are rise from PBQS
element loads estimate by this formula:

111
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Modeling by FEM software: Plate modeling and analysis
were performed by finite element method using FEM
software. Shell93 element is three layered shell which has
been used mn modeling. It is a 3-D shell element which has
8 nodes and 6 degrees freedom for each of them
(3 degrees for transferring and 3 degrees for rotational
displacements). Tt is used in plate and shell modeling (with
flexural behavior). The FEM software analysis 1s modal
and linear, so nonlinear properties such as pozzolamcity
and contact element are neglect able. In this study, three
different supports are used for plate:

» A plate with fixed support in two opposite side
A plate with fixed support around it

A plate with fixed support in the corners

Genetic  programming;: Genetic Programming
(Banzhaf et al., 1998; Koza, 1990, 1992, 1994a, b) 1s a
recent development which extends classical genetic
algorithms (Back et al., 2000a, b, Mitchell, 1996) to
process nonlinear structures. This optimization technique
is based on the principles of natural evolution and is
consisted of several genetic operators: selection,
crossover and mutation.

The major difference between genetic programming
and genetic algorithms is the representation of the

solution candidates (Fig. 2).

Node definition: The nodes in the tree structure of genetic
programming can be classified into two types. One of
them is the terminal set which is consisted of constants or
variables. The other one 1s the function set which 1s
consisted of standard arithmetic operations, standard
programming  operations, standard  mathematical
functions, logical functions, or domain-specific functions.
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Fig. 2: A tree in genetic programming represents a formula
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Fig. 3: An example of sub tree crossover

Fig. 4: An example of sub tree replacement mutation

The elements of the terminal set and the function set are
used to construct well-formed expression trees, which
represent solutions to the problem, according to certain
rules.

Initialization: Genetic programming starts with an mitial
population of expression trees which are randomly
generated.

Fitness evaluation: Fitness evaluates how well a tree
performs in the problem environment. Fitness values are
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used by the selection method to select trees for
reproduction.

Selection: The selection method determines how trees are
selected from the population to be parents for crossover.
Better parents are usually selected with the hope that they
have a better chance of producing better off springs. The
roulette wheel selection 1s a popular selection method. In
Fig. 3 and 4, the most common crossover operator and
also an example of sub tree replacement mutation are
presented.

RESULTS AND DISCUSSION

In artificial intelligence, Genetic Programming (GP) is
an evolutionary algorithm-based methodology 1spired by
biological programs to find computer programs that
perform a user-defined task It s a specialization of
Genetic Algorithm (GA) where each individual is a
computer program. Therefore, it 1s a machine learning
technique used to optimize a population of computer
programs according to a fitness landscape determined
by a program's ability to perform a given computational
task.

As it said before, GPs main goal is to solve a problem
by searching highly fit computer programs in the space of
all possible solutions and finding near global optimum
solutions by keeping many solutions. This method
several advantages over the more conventional
multivariate analysis or distance-based classifier methods
used in data analysis and it has the potential to discover
simple rules m data that are both complex and noisy. No
assumptions of normality or independence are recuired
about the analyzing frequencies data. Tt is possible to
combimne numerical, ordinal and categorical data m the
same analysis and the evolved models can easily be
applied to new data. The identification and selection of a
small subset of the available variables that has high
explanatory power are particularly useful. Considering of
the first steps of applying, precision 1s the only weakness
point of this is method which can be improved by
mentioned points.

Genetic programming is a branch of genetic
algorithms. The main difference between genetic
programming and genetic algorithms is the representation
of the solution. Genetic programming creates computer
programs in the lisp or scheme computer languages as the
solution. Genetic algorithms create a string of numbers
that represent the solution. So, genetic programming is
much more powerful than genetic algorithms. The output
of the genetic algorithm is a quantity, while the output of
the genetic programming 1s a another computer prograrm.
In essence, this is the beginning of computer programs
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that program themselves genetic programming uses four
steps to solve problems:

Generate an 1mutial population of random
compositions of the functions of terminals of the
problem (computer programs)

Execute each program in the population and assign
1t a fitness value according to how well it solves the
problem

Create a new population of computer programs
Copy the best existing programs

Create new computer programs by mutation.
Create new computer programs by crossover
(sexual reproduction)

The best computer program that appeared in any
generatiory, the best-so-far solution, 1s designated as
the result of genetic programming (Koza, 1992)

A hierarchical tree structure is used in Fig. 2.

Figure 2 shows a solution candidate in genetic
programming while a string of characters with a fixed
length represents a solution candidate m genetic
algorithms. The genetic programming framework consists
of the flowing elements: node defimtion, mitialization,
fitness evaluation, selection, crossover, mutation and
termination condition.

Node definition: The nodes n the tree structure of genetic
programming can be classified into two types. One of
them is the terminal set which is consisted of constants or
variables. The other one is the function set which is
consisted of standard arthmetic operations, standard
programming  operations, standard  mathematical
funetions, logical functions, or domam-specific functions.
The elements of the terminal set and the function set are
used to construct well-formed expression trees, which
represent solutions to the problem, according to certain
rules.

Initialization: Genetic programming starts with an mitial
population of expression trees which are randomly
generated.

Fitness evaluation: The most difficult and most important
concept of genetic programming is the fitness function.
The fitness function determines how well a program is
able to solve the problem. Tt varies greatly from one type
of program to the next. For example, if one were to create
a genetic program to set the time of a clock, the fitness
function would simply be the amount of time that the
clock is wrong. Unfortunately, few problems have such an
easy fitness function, most cases require a slight
modification of the problem in order to find the fitness.
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Selection: The selection method determines how trees are
selected from the population to be parents for crossover.
Better parents are usually selected with the hope that they
have a better chance of producing better off springs. The
roulette wheel selection is a popular selection method.

Crossover: Two primary operations exist for modifying
structures in genetic programming. The most important
one is the crossover operation. In the crossover
operation, two solutions are sexually combined to form
two new solutions or offspring. The parents are chosen
from the population by a function of the fitness of the
solutions. Three methods exist for selecting the solutions
for the crossover operation.

In GP, sub tree crossover is the most common
crossover operator. Sub tree crossover works by
replacing a sub tree in one parent with a sub tree from
other parent to produce the offspring. Figure 3 presents
an example of this sub tree.

Mutation: Tn GP, mutation is usually achieved by
replacing a sub tree with a randomly generated sub tree or
by exchanging two randomly selected sub trees. An
example of sub tree replacement mutation is presented in
Fig. 4.

Termination condition: Common termination conditions
include fixed generations, fitness target, fitness
convergence and diversity convergence.

Genetic programming pattern: Modeling using GP needs
exact pattern. This pattern includes primary ordering and
determine of mathematical operator.

Primary ordering: Amounts of data and variables, plate
ordering, linking function of gene, determination of fitness
function and genetic operator and also constant values
are some required related data for Gp primary ordering.

Mathematical operators: The perfect list of mathematical
operator in modeling is shown in appendix .

Data modeling: Metal models provided by primary data
and GP training, separately. Finally, the best model and
the perfect details will be provided. Considering spreading
of matters, we provided only the best model for high
strength low alloy steel. For the best GP modeling of high
strength low alloy steel, C™ computer codes is used.
Seven different metals were modeled by FEM and 100
samples were produced for each, then provided to GP for
training to choose the best model for modeling.
Afterwards, the results defined mathematically. The
characteristics of 100 plate samples are used in GP training
as data, which are different for each plate. Each plate has
6 parameters: length, width, thickness and modulus of
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Table 1: General characteristics in used metal
Poissons Modulus of GPA density

Plate ratio (v)  elasticity (B) v (kgm™)
High strength low alloy steel 0.30 200 7860
Gray iron 0.29 69 7200
Aluminum by allay 1100-H14 0.33 70 2710
Copper 0.34 120 8910
Cold rolling steel 0.30 190 7920
Malleable iron 0.29 165 T300
Aluminum by alloy 2014-T6 0.33 75 2800

Fig. 5. Terminology tree of the best GP model in high
strength low alloy steel

elasticity, density and Poisson’s ratio. Altering of
plate length, width and thickness are 0.5-12, 0.5-4 and
0.002-0.22 m, respectively. Modulus of elasticity and
Poissons ratio are shown in Table 1.

Genetic programming pattern: Modeling using GP needs
exact pattern. This pattern includes primary ordering and
determine of mathematical operator.

Primary ordering: Amounts of data and variables, plate
ordering includes chromosome and genes number, size of
head and tail, size and place of division and linking
function of genes, determine of fitness function,
determine of genetic operator, determine of constant
values are some required related data for GP primary
ordering.

Figure 5 shows the terminology tree of the best GP
model in high strength low alloy steel.

Mathematical formula details of high strength low
alloy steel modeling are represented as follow (Fig. 6).

Model testing: For test of obtained models, another
100 samples are provided. Due to programming m GP
model test, 2nd set of data should be provided. Then FEM
frequency results were compared with the best GP model.
Considering spreading matter, only the best model of lugh
strength low alloy steel modeling 1s provided.

After the mentioned stages in and also choosing
100 samples and providing 2nd set of data, due to
programming in GP model, the results have been tested
and then FEM frequency results were compared with the

Generation |Program size | Uterals Used variables Training fitness Testing fitness| Training R® Testing R’
ara(5), e(5), game(7),
4505 62 26 nou(4), tol(2), zerkamai(3) 878.616357565559 | - 0.992727998034072| -

+

+

Numerical constanst:

Gene 1
c0 = -4.651337
cl =1226165

Gene 2
c0 =-3.435394
cl =-8.430298

Gene 3
c0 = 6.808777
cl =4.538727

GT31.LT4K.Pox10.NET4F.Asec.d0.ET4B ET4H.d2.c1.d0.c0.c1.d1.c0.c0d4.d5dd1.d3.c0.d0.c1d2.d1.c0.c0.d1.d3.d5.c0.c1.c0
ET3G.GOE4L.ET4A.COE2ZC NET3F.GT2F.-. Asinh.d1.d1.d2.c0.c0.d4.c(.d4.c0.d2.c1.d2.d2.d2.d5.d3.c1.d1.d2.d1.d1.c1.d3.c0.d4.d2.d5

LOE2E.COE2F.c1.c0.LTAGET4).Acot NET4Ld2.d5.d9.c0.d1.d0.d3.d3.c0.¢1.¢0.d0.d0.d1.d5.c0.d4.d3.d1.d4.d4.d1.d3.c0.c1

Fig. 6: Mathematical formula details in modelling of low alloy steel with high strength
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Fig. 9 Comparing error percentage in metals programming
model

best GP model. Comparing frequency and Error Percent of
GP and FEM model in high strength low alloy steel are
shown in Fig. 7 and 8.

Comparing frequency of GP and FEM model in
high strength low alloy steel and also comparing of
the error percentage in high strength low alloy steel
modeling are shown in Fig. 7 and 8. Also Fig. 9 shows
the comparing error percentage in metals programming
model.

Comparing error percentage in metals programming
model it can be seen that frequency of GP and FEM model
are close to each other in a good accuracy so that we can
use GP model in metal frequency calculating.

CONCLUSION

This research is an investigation to find a new
analyzing method for complex and noisy series of data
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whete Firdte Element Method (FEL iz the most common
method to perform the analvzing of dfferent series of
engineering data The FEMM iz a reliable analyzing method
because of having the athitrary shape and also the
acceptable results of the calculati ons, but spplying of it in
complex and noisy data needs much more tithe andwill be
cotpler to. Thiz shady is an irvvestigation to sclwe a
satple problem of engineering problems in this way
Predicting and caloudating of metal frecquency with a
fiew  approach method of genetic programming is the
main god of this research. In this study, a new
commputer method, which has the potential to discover
sitnple rulesin a complex and nodsy series of metal plate's

frequency data, is used. In other words, this research tries
to apply and find a usage of this new specific computer
method in ciwl, mechanic and other related field of

engineering.
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Select{Waight | hhame Representation Arity | Defirition

1 0fxy) Zero? Z y)=0

! 1) One2 2 1xy=1

M humber Fi Fi 1 Pif) = 3.141592653589793

| Euler's number £ 1 Efx) = 2,718281828459045

1 Sine Sin 1 sin()

1 Cosing (s 1 cos()

| Tangent Tan 1 tan(x)

Mt Coserant Cse 1 esefx)

| Secant Sec 1 secly)

{ Cotangent (ot 1 cokfx)

1 frcsing fisin 1 arcsinfx)

1 Arccosing ficos 1 arceos(x)

| Arctangant fikan 1 arctan(x)

1 Arccosecant ficse 1 areese(x)

| Arcsecant fisec 1 aresec(x)

1 frccotangent ficok 1 atecoklx)

! Hyperbalic sing Sinfi 1 sinh()

1 Hypetbalic cosing Cosh 1 toshi)

1 Hypetbalic tangent Tanh 1 tanhix)

1 Hypetbalic cosecant Csch 1 eschix)

1 Hypetbalic secant Sech 1 sechix)

1 Hypetbalic cotangent Coth 1 cathix)

1 Inwverse hypetbolic sine fisinhy 1 arcsinhi)

| Iriverse hypetbalic casing ficash 1 arceosh(x)

Mt Inverse hypetholic tangent fitanh 1 arctanh(x)

| Inverse hypethalic cosecant ficsch 1 arcesch(x)

Select feight | Hame | Representation Arity | Definition

1 Inwerse hypetbalic secant fisech 1 arcsech(x)

1 Inwerse hyperbolic cotangent fcoth 1 arccoth(x)

1 Complement NOT 1 (1)

M1 ORL ORL 2 ifx<O0RYy <0, then 1, else

1 OR2 ORZ 2 iFu»=00Ry »=0,then 1, else
Mt OR3 OR3 z ifxe=00Ry<=0thenl, ekel
[ OR4 OR4 2 iFclORYy <1, then, else

1 ORS ORS z ffre=10Ry»=1thenl, el
M1 ORE URe 2 ifre=10Ry==1thent, elszl
! ANDL AND! 2 ifx <0 AND y < 0, then 1, els2 0

! A2 D2 2 if x =0 AND y =10, then 1, skse 0
! AND3 AND3 2 ifx e=0AMDy <=0, then 1, else 0
1 A4 BND4 2 Fx < 1 ANDy < 1, then 1, else 0

! DS ANDS 2 Fxz=18MDy 2=1, then 1, else 0
! ANDG AN 2 Fxz=180Dy <=1, then 1, else
1 Liss Than with 2 inputs () LT24 2 if <y, then z, else y

1 Greater Than with 2 inputs () G124 z if s =y, then sz, glse y

1 Less Or Equal To with 2 inputs () LOE2A z if x <=, thenx, else y

1 Greater Or Equal To with 2 inputs (4) GOEZA 2 if 5 =y, then x, elsey

1 Equal To with 2 inputs (A) ET24 z if =y, then, glse v

1 bt Equal To with 2 inputs (A) NETZ4 2 if 3 1=y, thenx, elsey

1 Less Than with 2 inputs (B) LTZ6 z ifx <y thenl, else

1 Greater Than with 2 inputs (B) GT2B 2 if 5= then 1, else 0

1 Less Or Equal To with 2 inputs (8) LOEZR 7 ifx <=y, then 1, else 0

1 Greater Or Equal To with 2 inputs (B) GOEZE z iF s =y, then, else 0

1 Equal To with 2 inputs (B} ETZR z ifa=1y thenl,elell
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SelectWeight | Hame Representation Bty | Difirition

1 Hot Equal Ta with 2 inputs (8) NET2E i iF 1=y, then 1, else 0

1 Less Than with 2 inputs (C) LT2C z iF s < v, then (x+y), else (ey)

1 Garater Than with 2 inpuks () a2 z if 3 v, then (o), else (o)

: Less Or Equal To with 2 inputs {C) LOE2C z if 5 2=y, then {ety), else (x4

1 Greater Or Equal To with 2 inputs (C) G0EZC z if ==y, then ety else ()

} Equal To with 2 inputs (C) ET2C z if 5=y, then (x+v), else (x-y)

1 Mot Equal Ta with 2 inputs () METZC z iF 3 1=y, then Gy, else ()
1 Less Ihan with 2 inputs (L) LIzy o If % < v, then (x*), else [xfy)

f Greater Than with 2 inputs (0 aTeh z if 2y, then (x%y), else (o)

1 Less Or Equal To with 2 inputs {0 LOEZD z if ==y, then (x*y), else o

i Greater Or Equal To with 2 inputs (D) GOEZD 2 iF s ==, then (x*y), elae v

i Equal To with 2 inputs (D) ETZD z if 5=y, then (x*y), elae (xy)

! Mot Equal Ta with 2 inputs (D) NET2D z iF s 1=y, then {x*y), else (xfy)

i Less Than with 2 inputs () LTZE z if 3 2y, then (o), else (et

i Greater Than with 2 inputs (E) aTZE z if 2 y, then (o), else ()

1 Less Or Equal To with 2 inputs (E) LOEZE z if 5 x=y, then (e, else ()

1 Greater Or Equal To with 2 inputs (E) G0EZE z if ==y, then (o), else (%)

1 Equal Ta with 2 inputs (E) ETZE 2 iF s =y, then (z4y], else (%)

i Hot Equal Ta with 2 inputs (E) NETZE z iF s 1=y, then (), else (x*y)

i Less Than with 2 inputs (F) LT2F z iF % < v, then (x+y), else sin(x*y)

! Greater Than with 2 inputs (F) aliF z if 3 2y, then (xv), else snfity)

i Less Or Equal To with 2 inputs [F) LOEZF z if 5 £=, then (), else sinfx®y)
i Greater O Equal To with 2 inputs (F) G0EZF z if 2=y, then (e, else sinfx®y)
1 Equal To with 2 inputs (F) ETEF z if =y, then (x+v), else sinfx*y)

1 Mat Equal Ta with 2 inputs (F) METZF z if 3 1=y, then (], else sin(e®y)

1 Less Than with 2 inputs (&) LT2G z iF 5 <y, then (x+y), else atan(x®y)
Select/Welght ‘ Hame Representation \ Arly | Defintion
A1 Greater Than with 2 Inputs (G) G126 2 [ = v, then (x+y), else atan(x™y)
1 Less Cr Equal To with 2 Inputs (G) LOE2G 2 [ =y, then (x4y), else akan(sty)
1 Greater Or Equal Ta with 2 inputs () GOE2G 2 2 =y, then (ety), else akan(x'y)
1 Equal Ta with 2 inputs (G) ET2G 2 o=y, then (eky), else atan(x®y)
1 Nt Equal Ta with 2 inputs (3) NET2G 2 I 1=y, then (xy), else atan(x®y)
1 Less Than with 3 inputs (4) LT3A 3 fo 20, theny, alse z
{ Greater Than with 3 inputs () GT3A 3 =0, then y, elsa 2
1 Lizss Or Equal To with 3 inputs (A) LOE3A 3 <=0, then y, else 2
ol Greater Or Equal To with 3 inputs (4) GOE3A 3 [y o= 0, theny, glsez
1 Equal Ta with 3 inputs (A) ET3A 3 =0, theny, elsa z
M1 Nt Equal To with 3 inputs (4) MET3A 3 o 1=0, theny, else z
1 Less Thar with 3 inputs (B) LT3 3 F(x+y) < 2, then (xty), glsez
1 Greater Than with 3 inputs (8) GT38 3 I () = 2, then (oty), glse 2
1 Less Cr Equal To with 3 inputs (B) LOE3E 3 f(x+y) <=2, then (dy), else 2
M1 Greater Or Equal To with 3inputs (B) GOE3R 3 F () =2, then (k) else 2
1 Equal Towith 3 inputs (B) ET3E 3 f (xy) = 2, then (xty), else 2
1 Mot Equal To with 3 inputs (B) NET3R 3 F{x+y) 1= 2, then (x+y), else z
M1 Less Than with 3 inputs (C) LTaC 3 F(x+y) < 2, then (edy), else (x42)
Mt Gareater Than with 3 inputs (2) GT3c 3 F (k) = 2, then (o), else (ude)
1 Less Cr Equal To wikh 3 inputs (C) LOE3C 3 I (xby) <=2, then (xby), else (xt2)
1 Greater Or Equal Ta with 3 inputs (C) GOE3C 3 F{x+y) 2=z, then (ety), else (xt2)
1 Equal To with 3 inputs (€) ETaC 3 F(x4y) = 2, then (xy), else (x4+2)
M1 Nat Equal To with 3 inputs (C) NETAC 3 F () 1= 2, then (xdy), else fxde)
A1 Less Than with 3 inputs (D) LT4D 3 [ (xby) €2, then (x+y), else (x-2)
@t Greater Than with 3 inputs (0) G730 3 () 3 2, then (edy), elee (v-2)
{ Less COr Equal Ta with 3 Inputs (D) LOED 3 F{x+y) <=2, then (), else (x-2)
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