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Abstract: In this study, a new method based on artificial immune system algorithms 1s proposed that can find
both pure Nash equilibrium and mixed Nash equilibrium normal form games. It 18 shown that after some
generations, the density of antibodies is increased around a point which is consistent Nash equilibrium.
Another important and applicable aspect of using immune based algorithm is the memory notion. Using memory
naturally makes the algorithm converges to answer faster than other evolutionary based algorithm that are used

to find mixed Nash equilibrium.
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INTRODUCTION

Nash Equilibrium (NE) is an essential concept of
game theory. The concept has been used to understand
the strategic actions of multiple players in a deterministic
gaming environment. Tt is also very useful for studying
the potential performance of a market structure before the
market 18 introduced. For these reasons, NE has been a
research focus m microeconomics and industrial
organization (Carlton and Perloff, 2000, MasColell et al.,
1995). Technmiques for searching for an NE of a specific
game are usually based on the definition of NE. That 1s,
search for a pomt which satisfies every player’s
optimizing condition given the other players’ choices. In
a simple two player normal form game, we can find NE
as the intersection of two players’ best response curves.
This manual approach can alse be applied to NE search in
a general game by drawing best response curves and
searching for an intersection {(Cunningham et af., 2002).
The analytical approach to solving optimizing conditions
of all players 1s useful when the solution is obtained by
several simple mamnipulations. For
example, a Cournot solution for symmetric oligopoly
players can be easily obtained by solving the first-order
condition for maximizing each player’s profit
(Carlton and Perloff, 2000).

All the games in which each player decides to choose
a strategy to play can be divided into two categories. First
are plays with dominant strategy in which if one player
selects it, then wins in respect to what strategy opponent
selects. Second kinds of plays are such plays in which
there are no domination by any strategies. In these kinds

mathematical

of games the way to select the proper strategy to play 1is

not determimistic so the probability is used to have a
combmation of all possible strategies. As it will be
mentioned in detail, this probability shows a mixed NE. In
such games usually more than one point can be selected
as a mixed NE (Gibsson, 1992). Naturally this can cause
problem for any search based algorithms to select the
consistent mixed NE  between all possibilities
(Fudenberg and Levine, 1996). In this study, to solve this
problem an immune based algorithm 1s proposed which
can select the consistent mixed NE with few generations
and high accuracy.

The field of Artificial Immune Systems (AlSs) 1s a
recently created biologically mspired metaphor, subject of
research in recent years. Numerous immune algorithms
have been proposed, based on processes identified within
systems. These computational
techniques have many potential applications, such as
player 1 tern recognition, fault detection, computer
security and optimization. A survey of the research in this
field can be found by Dasgupta et al. (2003). Interactions
between the different elements that belong to the immune
system and between internal elements and external
elements, make the immune system to exhibit cogmtive
abilities (Varela et al., 1988). The existence of leamning due
to these interactions, suggests the 1dea of modeling such
interactions using game theory. In order to solve some
game theoretic problems like finding NE, B-cells are
thought to be involved in idiotypic interactions which
may be seen as pairwise interactions between them.
Accordingly, existence of NE in a game is carried out from
a B-Cell suppression or stimulation level, which will have
effect on the B-Cell proliferation rate (De Castro and
Timmis, 2003).

vertebrate 1unmune
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MIXED STRATEGIES AND EXISTENCE OF
EQUILIBRIUM

Let S; be the set of strategies available to player i and
the combination of strategies (S,,..,8") to be Nash
equilibrium if, for each player i S is player i's best
response to the strategies of the n-1 other players:
Sn8) (D

R TSR
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There 1s no Nash equilibrium in the following game,
known as matching pennies.

Figure 1 shows bimatrix payoff function for coins
game. In this game, each player's strategy space 1s
{Heads, Tails}. As a story to accompany the payoffs in
the bi-matrix, umagine that each player has a penny and
must choose whether to display it with heads or tails
facing up. If the two pennies match (1.e., both are heads
up or both are tails up) then player 2 wms player I's
penny; 1if the penmnies do not match then 1 wins 2's penny.
No parir of strategies can satisfy (NE), since, if the players'
strategies match-(Heads, Heads) or (Tails, Tails)-then
player 1 prefers to switch strategies, while if the strategies
do not match-(Heads, Tails) or (Tails, Heads)-then
player 2 prefers to do so.

The distinguishing feature of Matching Pennies 1s
that each player would like to outguess the other.
Versions of this game also arise in poker, baseball, battle
and other settings. In poker, the analogous question 1s
how often to bluff: if player 1 1s known never to bluff then
I's opponents will fold whenever 1 bids aggressively,
thereby making it worthwhile for 1 to bluff on occasion; on
the other hand, bluffing too often 1s also a losing strategy.
In baseball, suppose that a pitcher can throw either a
fastball or a curve and that a batter can hit either pitch if
(but only if) it is anticipated correctly. Similarly, in battle,
suppose that the attackers can choose between two
locations (or two routes, such as "by land or by sea") and
that the defense can parry either attack if (but only 1f) it 1s
anticipated correctly.

In any game m which each player would like to
outguess the other(s), there 13 no Nash equilibrium (at
least as this equilibrium concept was defined here)
because the solution to such a game necessarily
mvolves uncertamnty about what the players will do.
Now the notion of a mixed strategy 1s introduced, which

Player 2
Heads | Tails
Heads -1,1 1,-1
Player 1
Tails L1 | 1,1

Fig. 1: Bimatrix payoff function for coins game
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is interpreted in terms of one player's uncertainty about
what another player will do. Formally, a mixed strategy for
player i is a probability distribution over (some or all of)
the strategies m 3. We will hereafter refer to the strategies
in 5, as player i's pure strategies. In the simultaneous-
move games of complete information, a player's pure
strategies are the different actions the player could take.
In Matching Penmes, for example, S; consists of the two
pure strategies Heads and Tails, so a mixed strategy for
player 1 13 the probability distribution (g, 1-2) where, q 1s
the probability of playing Heads, 1-q is the probability of
playing Tails and O<q<l. The mixed strategy (0, 1) 1s
simply the pure strategy Tails; likewise, the mixed strategy
(1, 0) is the pure strategy Heads. More generally, suppose
that player i has K pure strategies 5, = {s;,,....8;c}. Thena
mixed strategy for player 1 1s a probability distribution
(Dits---»Puc) Where, py, is the probability that player 1 will
play strategy s, for k = 1,.. K. Since, p, 1s a probability,
so, O<py<] fork =1, Kandp,+..+p, = 1.

Definition: Tn the normal-form game G = {S,,...5,;u,,...u,},
suppose 3, = {s,,,...8x}. Then a mixed strategy for player
iis a probability distribution p; = (py,...pi), Where, O<p,<1
for k = 1,...,K and p,+..p, = 1 (Fudenberg and Levine,
1996).

Existence of Nash equilibrium: To derive player i's best
response to player J's mixed strategy more generally and
to give a formal statement of the extended definition of
Nash equulibrium, now restrict attention to the two player
case, which captures the main idea as simply as possible.
Let T denote the number of pure strategies in 3, and K
the number in S, We will write S, = {s,,....8,,} and
S, = {88y} and we will use s, and s, to denote
arbitrary pure strategies from 3, and 3, respectively. If
player 1 believes that player 2 will play the strategies
(85,...,8) with the probabilities (p,,,...,) then player 1's
expected payoff from playing the pure strategy s,; is:

ipzkul(SlJ'SEk) (2)
k=1

and player I's expected payoff from playing the mixed
strategy P = (Pi1....Py) 185

= Ej‘zipu Paclhy (Slj-szk) (3)

] K
v (pl spz) = Epu {szkm (51]-521( )}
[ =t i3 k=l
where, py,'py, 1s the prebability that 1 plays s, and 2 plays
S, Player I's expected payoff from the mixed strategy p,
givenin Eq. 3, 1s the weighted sum of the expected payoff
for each of the pure strategies {s,,,....8,;}, given in Eq. 2,
where the weights are the probabilities (p,,,....py;). Thus,
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for the mixed strategy (py,,....py;) to be a best response for
player 1 to 2's mixed strategy p,, it must be that p,>0 conly
if:

K K 4
gpﬂ«ul (SIJ'SEk ) z ;pzﬂ% (51]' 'SEk) ( )

for every sy mn S, To give a formal statement of the
extended defimition of Nash equilibrium, we need to
compute player 2's expected payoff when players 1 and 2
play the mixed strategies p, and p;, respectively. If player
2 believes that player 1 will play the strategies {s,,....8,;)
with the probabilities (p,,,...,pxc). Then player 2's expected
payoff from playing the strategies (s,...8x) with the
probabilities (p;,....px) 18

)

1
j=l

K
Zpu-pzkuz (511-5%) (5)

k

K ]

Vv, (p1=p2): EPEk Epuuz (SIJ'SZk) =
k=L p
= p=

Given v,(p.p,) and v,(p,p,) we can restate the
requirement of Nash equilibrium that each player's mixed
strategy be a best response to the other player's mixed
strategy: for the pair of mixed strategies (p',,p’,) to be a
Nash equilibrium, p’, must satisfy:

(6)

vi(pi.03) 2 vy (o3

for every probability distribution p; over S, and p’, must
satisfy:
(7

Va (pI,pZ) e (p}:pz)
for every probability distribution p, over 3,.

Definition: In the two-player normal-form game
G = {5,,..8,;u,....,u;}, the mixed strategies (p',.p’,) area
Nash equilibrium if each player's mixed strategy is a best
response to the other player's mixed strategy: Eq. 6 and 7
must hold (Fudenberg and Levine, 1996).

IMMUNE NETWORK THEORY

The original immune network theory, proposed by
Jerne (1974) suggested an mmmune system with a dynamic
behavior even in the absence of non-self antigens. This
proposal was different from colonal and negative
selection, as it suggested that B-cells were capable of
recognizing each other. This would endow the immune
system with a certain type of eigen-behavior and network
of communication among cell receptors.

Several theoretical immunologists were nterested in
creating models of immune networks so as to mtroduce
new ways of explaining how the immune system works
(Perelson, 1989; Farmer et al., 1986). Once researchers in
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computational intelligence became aware of these works,
interest was established m applying these new ummune
nsprred models to solve problems in computing,
engineermg and other domain areas. The first network
models were mainly based on sets of differential
equations governing the variations in population sizes of
antibody molecules and B-cells. They have been widely
used by the AIS commumty m applications such as
robotics, optimization and control (Ishiguro ef al., 1997,
Bersini, 1991; Bersini and Varela, 1994). The immune
networlks also served as inspiration to the development of
machine learning networl models with applications mainly
in data analysis (De Castro and Von Zuben, 2001). The
latter have been classified as discrete immune network
models as they are not based on differential equations,
but iterative procedures of adaptation or difference
equations.

The discrete immune networks differentiate from the
contimious models in the sense that their adaptation
procedures are not based upon a set of differential
equations, but an iterative process of adaptation. These
were originally developed for recognition, data clustering
and data compression. However, it is suggested that
these learning algorithms can be considered as generic
and can therefore be applied to other domains such as
optimization, control and robotics. Each learmng alg orithm
can be used to construct an artificial immune network
capable of extracting information from a set of input
patterns that corresponds to the antigenic universe. For
both algorithms, B-cells and antibodies (Ab) are the main
elements of the immune networks and antigens (Ag)
correspond to the input pattern.

In the immune network learning algorithm proposed
by De Castro and Von Zuben (2000) named aiNet
(Artificial Immune Network), the network 1s mitialized with
a small number of elements randomly generated. Each
network element corresponds to an antibody molecule,
le., an attribute string represented in Euclidean shape-
space. The next stage 1s the presentation of the antigenic
patterns. Each pattern 1s presented to each network cell
and their affinity is determined. A number of high affinity
antibodies are selected and reproduced (clonal expansion)
according to their affinity: The higher the affinity, the
higher the number of clones to be produced. The clones
generated undergo somatic mutation inversely
proportional to their antigenic affimty: the higher the
affinity, the lower the mutation rate. A number of high
affinity clones is selected to be maintained in the networl,
constituting what is defined as a colonal memory.

The affinity between all remaiming antibodies 1s
determined. Those antibodies whose affinity is less than
a given threshold are eliminated from the networls (colonal
suppression). All antibodies whose affimity with the
antigen 1s less than a given threshold are also eliminated
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from the network. Additionally, a number of new randomly
generated antibodies are incorporated into the networlk.
The remaining antibodies are incorporated into the
network and their affinity with the existing antibodies 1s
determined. All but one antibody whose affinity is less
than a given threshold are eliminated (De Castro and
Timmis, 2003).

PROPOSED IMMUNE ALGORITHM

Here, an algorithm for finding NE in an n-player
normal-form game is proposed. Finding the NE means to
find values of p, and p, that are the probability of playing
each strategy by each player. First some pairs of
antibodies {p,,p,} are generated randoemly considering
O<p,<l. Then the existence of NE is checked by two
conditions in Eq. 6 and 7. If both conditions are satisfied
then the value of affinity of p, and p; is added up by
one. The affimty shows how many times the selected
pairs of antibodies have the NE condition satisfied. In
next step those pairs of antibodies whose affinities are
more than predefined threshold &, are selected to be
colonized. The number of copies 1s proportional to their
affinities: the higher the affimty, the larger the clone size.
Mutate those selected cells with a rate inversely
proportional to their affinities: the higher the affinity, the
smaller the mutation rate. This mutation can produce
better or worst antibodies than previous and by this step
the whole algorithm uses exploitation technique to escape
from local NEs. Re-select some highest affinity mutated
clones to compose the new generation and replace some
low affimity cells by new ones. All these steps should be
repeated in proper number of times to make all antibodies
converge to NE the detailed algorithm 15 as follow:

Initialization: Create an imtial random population of
{p,,p, antibodies
Antibody presentation: for each pair of antibodies,

do

Step 1: Check the value of affinity for each pair by
validating the NE condition in Eq. 6 and 7

Select the « percentage of highest affinity
antibodies

Clone (generate identical copies of) these o
percentage of antibodies. The number of copies
15 proportional to thewr affinities: the higher the
affimty, the larger the clone size (number of
offspring)

Mutate these ¢ percentage of antibodies with a
rate inversely proportional to their affimities: the
higher the affinity, the smaller the mutation rate

Step 2:

Step 3:

Step 4:
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Step 5: Re-select P percentage of highest affinity mutated
clones to compose the new antibodies

Step 6: Replace some low affinity antibodies by new ones

*  Repeatsteps 1 to 6 until higher number of antibodies

converge to NE

By executing this algorithm, number of antibodies
would be increased around the NE point of a game in each
cycle. In other word, the density of antibodies is
increased remarkably around the NE pomt in a game. After
some iterations of the algorithm, in a game which has
Nash equilibria, antibodies spread around more than one
point instead of just one but if these iterations continue
enough, 1t 1s proved that all antibodies start to converge
to just one point of NE. These local traps are always a
great problem in finding NE in any search-base method.
But the proposed algorithm uses the techniques of
mutation with coloning to make the algorithm not to stay
i a local NE and coloning tries to maintain good
antibodies together and omit those who are not proper.
Another important and applicable aspect of using immune
based algorithm to solve this problem i1s memory notion.
Using memory naturally makes the algorithm converges to
answer faster than other evolutionary based algorithm.
This is because memory tries to keep track of best
antibodies and in separate runs the existence of memory
antibodies omits redundant search and generation
increase. In the experimental results section, all these
features are tested by some games which have NE and
local NE.

RESULTS

Here, some experiments are tested to show how the
proposed algorithm works. As mentioned here we have
two main problems. The first problem is to find NE in
normal form games with static and complete information
and the second 1s how to escape from local NEs if they be
in a game. To show how the proposed algorithm can
challenge these problems one numerical example (Son and
Baldick, 2004) and one standard game by Gibsson (1992)
are configured.

Numerical example: Tn order to illustrate the local NE trap
issue NE search-base algorithms, a simple numerical
example 1s sunulated that has multiple local NE. The
proposed algorithm 1s executed on this example to show
if it can escape from local traps or not. A numerical game
example with local optima is developed by Michalewicz
(1996). The profit functions for player A and player B are
defined by:
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Fig. 2. (a) The figure shows that after 16 iterations the
error rate decreases. (b) After 16 iterations all
antibodies gather around a point wlich 1s NE for
this game

My (X, %p )= 214+ %, sin(pixx, ) + X, Xpsin(pixxg)
g (X,.%p ) = 21+ X, Xpsin{pixx, )+ xpsin(pixxg)

where, pi = 3.14. When player A chooses x, as his
strategic variable and given player B’s strategic variable
Xg, the profit of player will be given by 1, and player B will
get the profit Ty given player A’s choice of x, For the
simulation, the strategic choices of both players are
restricted between O and 7.5. In Fig. 2a and b, 1t 15 shown
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Player2
Opera  [Fight
Opera 2,1 0,0
Player 1
Fight 0,0 1,2

Fig. 3: Payoff matrix for battle of sexes game

Table 1: Tnmune algorithm parameters for playing numerical example game

Parameters Value
No. of initial random antibodies 20.00
Mutation rate 0.03
Tteration 16.00

Table 2: Tnmune algorithm parameters for playing numerical example game

Parameters Value
No. of initial random antibodies 15.00
Mutation rate 0.03
Tteration 17.00

that after 16 iterations, the number of antibodies around
the point (6.3,6.8) is increased and simultaneously the
number of antibodies around other points decreased, so
1t 18 concluded that this pomt 1s NE 1n this example. This
15 because the point (6.3,6.8) has higher affimty among
other points, so points with less affinity than others are
deleted in discrimination step. In Table 1 all parameters
which set for this run are shown.

Sexes fight: This example shows that a game can have
multiple Nash equilibria (Gibsson, 1992). Tn the traditional
exposition of the game (which, it will be clear, dates from
the 1950s), a man and a woman are trying to decide on an
evening's entertainment; here a gender-neutral version of
the game is analyzed. While at separate workplaces,
player 1 and 2 must choose to attend either the opera or
a prize fight. Both players would rather spend the evening
together than apart, but Player 1 would rather they be
together at the prize fight while Player 2 would rather they
be together at the opera, as represented in the
accompanying bi-matrix (Fig. 3).

Both (Opera, Opera) and (Fight, Fight) are Nash
equilibria. This game has a mixed strategy NE in (2/3.1/3).
In Fig. 4a and b it 15 shown that after 17 iterations, the
proposed algorithm passes all local NE traps and heads
toward the NE around the point (0.3, 0.6) and it is
concluded that this point is NE for this example. By using
mutation step as an exploitation procedure i proposed
algorithm, the number of antibodies around the NE point
of (0.3,0.6) is increased. This high density around the
point which has been created after search steps shows
the existence of mixed NE. In Table 2 all parameters which
set for this run are shown.
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Evolutionary strategy and suggested algorithm: The
benefit of using memory cells in the proposed algorithm
15 shown. As 1t 1s known one of the most applicable
evolutionary algorithms 1s Evolutionary Strategy (ES)
which just uses the mutation operator. This algorithm is
very close to what is introduced in this article based on
mnmune network algorithm except in using notion of
memory cells. So, here it can be shown a comparison
between these two algorithms for their number of
generations needed to converge to global answer. Tt is
expected that immune based algorithm converges to
answer faster that ES because of using memory cell. In
Fig. 5a and b on the left this fact is shown for game of
numerical example and on the right for game of battle of
sexes that convergence 13 occurred after 15-18 iterations
mn proposed immune based algorithm but m ES
convergence occurs in 23 iterations.
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CONCLUSION

Many search based algorithms can be applied to
solve the problem of finding mixed NE in normal form
games but most of them cannot handle the local answers
to reach the global one. Naturally because these methods
are based on local search techniques and most of the time
they just cycle around a local answer. To solve this
problem, it is suggested to use an evolutionary algorithm
to guide the search toward global pomt. This study
shows how the recently proposed immume network
technique can be applicable in such problems. As it 1s
shown in experimental results section, the proposed
immune algorithm can accurately find mixed NE between
all possible answers in normal form games which have not
dominant strategy and by using the notion of memory
cells, it converges to answers faster that other immune

based algorithms.
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