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Abstract: Extended Kalman filter is the first algorithm applied to nonlinear state estimation problem and
following its limits, other methods based on sampling were developed. We can consider two categories of
particle filters: filters which apply a deterministic sampling as the famous unscented Kalman filter and those
whose principle 1s the random sampling as the Particle filter. Furthermore, other approaches that take these two
forms of sampling were proposed as Sigma Point Particle filter. The major difficulty of these methods 1s the
computation time which is related to the complexity of sampling. Particle Filter is one among the methods that
has attracted particular interest recently;, however, PF suffers the problem of degeneration of particles that
occurs after re-sampling. We propose to inprove PF by the bioinspired algorithm Particle Swarm Optimization
as these 2 models have several common. The hybrid method developed in this study is called PFPSO. The
PFPS0 reduces significantly the degeneracy of the particles; empirical results obtained by applying PFPSO to
the problem of estimating the trajectory of a mobile robot illustrate robustness and computational efficiency

of our approach.
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INTRODUCTION

Being nonlinear and non Gaussian most of the time,
the general form of a discrete-time nonlinear dynamic
system 1s modelled in Eq. 1 and 2, where: X, 15 the
uncbserved state at step k. Let P(X;) be its initial
distribution, its evolution 1s related to a Markovian
process having P(X,[X, ) as a density function. The noted
observations 7, are independent and related to X, they
are generated according to the density function P(7,[3,).

X, = (X u,v) (1
Z, =h(X,.n,) 2
Where:
U, = A known exogenous mput
vy = A process noise with the distribution P(v,)
P(ny) = The distribution of the observation noise
f = The transition function

h = The observation function

P(¥ X)) = Defined by f and P(v,), h and P(n,) define the
probability P(Z,|X,), the estimating state 1is
obtained by a recursive process

Nonlinear systems are often sullied with noises
related at the same time on the process of state and the
collected observations. Kalman filter (Kalman, 1960) is
applied to Gaussian linear systems with discrete or
continuous states; its success was 1n short following the
state models evolution, being nonlinear non-Gaussian in
majority.

PF 13 a method based on sampling has the advantage
of being applied to any type of system, however it has
some form of degeneracy due to the increase in the
variance of samples (Doucet et af., 2001).

To remedy this problem, other researches has been
conducted and resulted in algorithms such as Sigma
Point Particle Filter (SPPF) also known as Unscented
Particle Filter (UPF) (Van der Merwe et al, 2000),
GMSPF  (Gaussian Mixture Sum Particle Filter)
(Van der Merwe et al., 2003) and so on. These approaches
have helped to correct the particles, thus, the problem of
computing time was inevitable. The second part of this
study 18 devoted to the main methods for filtering
nonlinear systems, given next Particle Swarm Optimization
(PS0) (Kennedy and Eberhart, 1995; Clerc, 2004) will be
briefly defined following a comparison of PF and PSO.
Both of PF and PSO use random sampling at initialization
stage and the correction of the particles for searching the
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Table 1: Comparison of PF and PSO: Comparison

Steps PSO PF

Initialization Random Random

Optimality Calculated according to Calculated according
criterion the weights of the particles  to a fitness

Particles Ts done in the Ts done by the calculation
updating re-sampling stage of their new positions

Calculation of
the best solution

By using the samples
after correction

Converge towards the
best particle

best solution, Table 1 shows similarities between these
two approaches. The PF is a Markovian process, so each
particle at step k remembers only its previous state k-1, in
fact, the particles n PSO are designed to save on memory
all previous states.

FILTERING NONLINEAR SYSTEMS

Unscented Kalman Filter (UKF): Extended Kalman filter
EKF (Kalman, 1960) was the first filter applied to nonlinear
dynamic systems, supposing state process distribution,
observation and all noises Gaussian. The principle of EKF
15 founded on lmnearization of fimctions f and h by
adopting a first order Taylor development, then, after
obtained a linear system, Kalman filter will be applied.
This appreach does not take into account the uncertainty
of states around the mean; for this reason EKF diverge in
most time.

Tulier and Uhlmann (1997) and Wan and Van der
Merwe (2001) introduced a new approach called
Unscented Kalman filter or Sigma Pomt Kalman filter,
assuming that the fundamental task in filtering and
estimation 1s to calculate statistics of the random variable
representing state. They propose to approximate mean
and covariance through nonlinear transformation called
unscented transformation. Let x be a random variable with
mean X and covariance P, a set of points can be
generated from the rows or the colons of matrix +fIp,
where [ 18 the size of the vector x. These pomts have O
mean and covariance P, By adding ¥ to each point, we
obtain a set of 2/ symmetric pomts which have the same
statistics, we have then 2147 Sigma vectors forming a new
matrix, weights W, are associated to these vectors here k
e R, (G+BR), is the ith row or colon related to the square
root of (IHk)P, (Eq. 3). To calculate the statistics of the
observation variable 7, Sigma points are propagated
through the nonlinear equationZ, =h(¥),1=0,....,2[

=% W=kii+k)

x,=§+(,{(z +k)Px) W, =1/2( +k)
X)zi*(.{(ﬂ Tk)P, ) W, =1/2( +k)

3)

i=1.1

i=0+1.2]

UKF filtering 1s applied to the augmented variable
obtained by the concatenation of the original state vector

495

and noises vectors. We observe that particles are
generated m a deterministic way because they are
extracted from the covariance matrix.

Particle Filter (PF): PF, also known as sequential Monte
Carlo method (Doucet et al, 2001) is a sophisticated
estimation technique based on simulation; its usually
used to estimate Bayesian models. The PF expresses a
prior distribution by using a set of a weighted particles.
Providing the prior density P(X,), it’ll be easy to construct
the posterior probability P(Z,/X,). Assummg that the
importance density function is w(¥|7,) and all particles
X, (1=1.N) are drawn from this distribution, that is to
say:

X, ~n(X} [%),.2,) ()
Based on PF,
P(Xi]Z,)= gwga(xk -xX) (5)
Where:
Wi n(;(};zl) ©

Therefore, as the samples were drawn from an importance
density, the weights in Eq. 6 are defined to be:

P(z,

X, JP(xX}

xi)

w.=w (7
ST X%,z
Normalized weights of particles are:
P W
Wi = (8)

jij
1
Wi
=1

When we obtain a measurement at time k, the particles
and their weights can be computed recursively by using
these formulas. After several iterations, only one particle
will probably have a larger weight, the others will be
equivalent to zero. This degeneracy can be expressed by
the variance of the importance weights, this 1s remedied in
the so called re-sampling stage: eliminate samples with
low mnportance weight and multiply those having high
weights.

Although, the re-sampling step reduces the effects of
the degeneracy problem, it introduces other
inconvemience. The particles that have high weights are
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Algorithm 1 PF
1: k=0
2: fori=0toNdo
3 generate ! using P(Xp)
4: end for
50 fork=1to=do
6: fori=1toNdo
T X -m(X X, 2)
8: end fl;JI' R
9: fori=1toN do
10 g oo PEIXOPOS X0
X X2
11:  end for
12: fori=1toNdo
o
13: o, = k
T,

14:  end for
15:  Re-sampling multiply/delete X, according to their weights
16: fori=1toNdo

. ;1
17: o =g
18:  end for

. 1 i "
190 px, |Z)= EEL o, 8%, - X))

. 1
20: - W gi

¥ = ﬁzjﬂxk

22: end for

Fig. 1: Algorithm PF

statistically selected many times, this leads to a loss of
diversity among the particles as the resultant sample will
contain many repeated points, this problem, is known as
sample impoverishment, complete description of PF is
shown in Fig. 1.

Sigma-point Particle Filter (SPPF): PF has the
advantage of being applied to neonlmear and non-
Gaussian systems. The major problem of PF is the
degeneration; an idea suggested (Van der Merwe et al,
2000) was to move the particles towards a space with
high probability. Instead of generating them in an
indetermimist way, a Gaussian distribution will be used.
Van der Merwe ef al. (2000) supposed that since, the
Unscented transformation makes it possible to capture a
random variable statistics as well as possible former, the
alternative 1s to use UKF for all particles which offers a
better approximation of state. This new filter named SPPF
(Sigma-Point Particle Filter) is viewed as hybridization
between PF and UKF.

Particle swarm optimization (PSO): PSO have been
suggested by Kennedy and Eberhart (1995). They
estimate that finding a source of food is similar to finding
a solution in a common field of research. The PSO 1s
mitialized randomly with a population of stochastic
particles; each particle is characterized by a position and
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a speed. Positions and speeds are adjusted as the particle
moves. At each iteration, all particles keep track of their
coordinates which are associated with the best solution
their have achieved so far (pbest) and the coordnates
which are associated with the best solution achieved by
any particle in the neighborhood (ghest).

Each particle updates its position and its speed
according to the following system Eq. 9-10, where, v 1s the
speed of the particle, X is the current particle (solution),
rand is a random number between 0 and 1, ¢, and ¢, are
constants representing social confidence coefficients as
follow:

c, How much particle trusts its experience
¢, = How much particle trusts its neighbors
v=v+g¢ *rand™ (pbest — X) + ¢, *rand " (gbest - X) 9
N=X+v (10)

Several variants and parameters were suggested for
this algorithm and in particular the values of ¢, and ¢,; we
will consider the values of ¢, and ¢, in our tests as
follows:
| = ¢, = 2, this assignment is the most used to ensure
equity between the experience and the
neighborhood one of the particle. Some versions of PSO

c
local

were proposed and adapted to different problems, we can
find an overview of this approach (Clerc, 2004).

PFPSO

In this approach called PFPSO, we propose to use
PSSO to reduce the degeneracy of PF: let consider X the
best particle at step k over its previous steps having the
higher weight which represents the besthypethesis and X2**
the best particle in the neighborhood of the particle.
Unlike Zhang et al. (2008), suggest replacing re-
sampling step of PF by one iteration of PSO equations,

we

thus, for each particle are applied the tow equations
below:

V=v+e ”‘rand”‘(Xlil'hEeSt —Xk)+c2 ”‘rarld*(}(f”St —Xk) (11)

X, =X, +v (12)
This will allow us to retain more diversity in the
samples.
The process 15 Markovian, i fact, the system does
not keep in memory all previous states, so, X2** will be
defined only in relation to X, and X, ,. The problem does
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Algorithm 2 PFPSO
k=0
2: fori=0toNdo
generate ! using P(Xp)
4: end for
fork=1to= do
6: fori=1toNdo
X -m(X X, 2)
8: end fl;JI' R
fori=1toN do
10 g = PEIXOPEIX)
X X2
end for
12: fori=1toNdo
.
W, =
=0,
14:  end for
fori=1toN do
16: v=vtg *rand*(Xib“‘_XL) +¢y *rand * (Xib“‘—X;)
X, X, +v
End for
18 fork=1toNdo
c 1
o, = N
20:  end for
1 ; i
P(X, |Z)= ﬁEL @, 80X, - Xy)
. 1 ;
2 X, =EE§‘:1X1<
end for

Fig. 2: Algorithm 2 PFPS

not arise for ghest that will be assessed against all the
particles n step k. Resulting samples will be used for the
calculation of the new solution X, as:

14y
N&ETH

where, N represents the number PF particles.

The main advantage of our approach is that it
enswres comvergence towards the best solution; the
variance 1s not likely to increase rapidly with the number
of iterations as in PF because no particles will be
eliminated regardless of their weight and the risk of
degeneracy will be reduced, it will not be entirely avoided
but will occurs more later, the cost in computing time will
not be affected, this is due to the simplicity of the 2
equations of PSO. The PFPSO is more defined in Fig. 2.

RESULTS AND DISCUSSION

Zhang et al. (2008) have recently proposed a new
approach called PSO-PF, they address the same problem
of degeneracy of PF where they propose to fix the
particles after re-sampling step, they use the 2 equations
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H[Ad], k-1

v

Fig. 3: Displacement of the robot since step k-1 at

of PSO, considering a number of PSO iterations for each
iteration of PF. The purpose of their algorithm is to avoid
the degeneracy occurred by eliminating/multiplying
particles with low weight. This method has yielded a
better result compared to the traditional PF, the major
drawback is that this has caused a slowdown in the
computing time that was predictable.

The aim of this study is not to measure owr new
approach with PSO-PF but to support the 1dea that the 2
PF and PSO algorithms have similarities and are most
effective when they are hybridized.

In application, we should estimate the trajectory of a
mobile robot equipped by a sensor materialized by a GPS,
this GPS permit to obtain measures where the robot will be
able to localize its position. All numerical results
presented in this paper were done by sunulation.

It should be considered that the state and the
observation multimodal, the
moves using a command, its situation is defined by the
co-ordinates x, y and the orientation ¢. State process is

models are robot

attacked by a noise formulated as v~N(0, Q,) where,
Q, = E[vkvl ] Let X, be the state vector at step k, we have:

X
X = Y
0y

movement will be modelled compared to a relative
displacement: distance covered AD and rotation Ad as
llustrated in Fig. 3. Let p, be the vector representing this
displacement, we have:
Dk
u, =
]
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The state model is representing as :

A
Eat J5]:)1,c-1c‘3'5{‘1’1x-1 +%"‘ka—1}
Ady
¢; 1}"'"%-1

1
by + E’M’k-l +¥ 0

XLo=| mea tAD, Sif{‘bk-l + (13)

The observation system will have to measure the
state of the robot by means of sensors. Let,Z, be the
observation variable, this vector will represent the same
co-ordinates exactly as those of the state vector, the
difference is that these co-ordinates are obtained by the
measurement system installed.

Hy Ty

Z]x =| Vi Tl
Bytn,y

(14)

The assumptions on the observation noise are the same
ones as for the state noise; this process is random and
Gaugsian, its modelled by n, where, n, ~N{O, R,) and
R, =E[n,n; |. We applied PF, SPPF and PFPSO to estimate
the trajectory of a robot which will carry out a rectangular
trajectory, this trajectory is discretized to 205 states.

For all these methods, we have considered the case
of 200 particles, the choice of the optimal number should
take another study and we do not approach it in this
article, this is why we choose to fix N to the value of 200.
We tested both these algorithms 100 times and results
represent the average of the overall error and the
average of computed time obtained over 205 steps. The
error estimated (e) is computed as the Euclidian distance
e, between the real state =' and the estimated one x,
where:

11031205

=— — £y
100 5 2055

From the results shown in Table 2, it is evident that
SPPF is the approach that gave the best estimate of the
trajectory with a global error around 7. However, SPPF has
taken a considerable time {more than 2 h), this represents
areal handicap for the purpose of filtering methods where
the goal is to find the best estimate on a real-time status.

An improvement was noted as we can deduce
in Fig. 4 which shows estimating errors of PF and
PFPSO over 205 steps; Fig. 5 shows one run of PF
and Fig. 6 Shows one run of PFPSO, we can see the
deviation of the robot from the real trajectory in PF,
therefore, we can observe a superposition of the real
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Fig. 4: The estimation error by PF and PFPS
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Fig. 6: PFPSO estimation

trajectory of the robot and that estimated in the case of
PFPSO until a certain point where degeneration appears,
the degeneracy is not avoided completely but was
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Table 2: Error and computing time

Factor PF SPPF PFPSO
Error 38.07 7.64 32.91
CPU time 37.00 sec 2 h 43 min 30 sec 39.00 sec

significantly reduced and occurs more later. This
mnprovement depends on particles, instead of bemg
eliminated they will be adjusted, i.e., their positions will be
shifted towards the best solution. We can not guarantee
the elimination of degeneracy because it depends on the
weight of sample: if it’s strongly weak compared to the
best weight, the improvement will be then relative, also,
PSO has the inconvenience of achieving the optimum
local. The computing time is still unchanged; the reason
1s that all particles will be adjusted in both cases PF and
PFPSO. Error and CPU time are shown in Table 2.

CONCLUSION

In conclusion we can resume that our method is more
efficient than the traditional PF, the Particle Filter presents
a certain degeneracy but it reacts better if it’ll be
combined with another approach like PSO as found by
Zhang et al. (2008) and in our work. Both of these two
improving algorithms don’t eliminate absolutely the
problem; the principal reason 1s the problem of reaching
the optimum local. We have considered m tlus study the
basic form of PSSO, in future, it would be interesting to
explore deeper PF and PSO and take into account their
parameters; n particular the optimal number N of particles
for PF and the constants ¢, and ¢, for PSO, also, we
suggest testing different topologies of P3O in our
proposed algorithm, this should probably give another

mnteresting discussion.
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