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Application of the Neuronal Method for
Calculating the Axial Dispersion in IFixed Beds of the Spherical Linings
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Abstract: The aim of this study was to examine the performances of this method for other type of spherical
packing using the experimental data Comiti, Mauret, Chung and Mall. To prove the power of thus method, the
calculation results obtained were modeled in the form of mathematical patterns similar to those proposed by
Comiti, Mauret, Chung and Mall, so we could compare our results with those obtained by these authors for the
same operating conditions. At the end a new relationship between axial dispersion and Reynolds number was

suggested.
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INTRODUCTION

The objective of this study is to determine the axial
dispersion coefficient in fixed beds of spherical particles
with the neuronal method and understand the
methodology of this approach to better define the
influence of all parameters that may affect the
phenomenon of axial dispersion. The results will be
reviewed later and compared with former work from the
literature. To test the performance of the neural method,
we studied the results of several researchers (Comiti and
Renaud, 1989; Mauret and Renaud, 1997; Chung and
Wen, 1968, Mall ef al, 1976), who worked on the
coefficient of axial dispersion in spheres fixed beds.

AXTAL DISPERSION IN THE SPHERES BEDS

When the velocity of the fluid n a porous medium
is lower or nil the axial dispersion coefficient tends to a
limit. Due to the tortuosity of the medium this value is less
than the molecular diffusion coefficient for considered the
chemical species (DeArcangelis ef al., 1986, Bacri ef al.,
1987, Koplik et al, 1986). In case where flow
velocities are lower or nil and beds of nonporous spheres,
Koplik et al. (1986) showed that one could write:

D, =Da_Da _Du 0 (D
t, €F £ g
With the formation factor:
{F=0,/0) (2)

which represents the ratio of the electrical conductivity of
the fluid to electrical conductivity of saturated porous
media. The electrical tortuosity 1s:

(3)

(v,=¢F)

For higher Reynolds numbers, turbulent diffusion
becomes dominant. We can explain this phenomenon from
a model-type random walk. An element of fluid moves
with an average speed (u = uy/e) and undergoes further
random displacement 1, The characteristic time is
(td = 1;/u) and the generated dispersion is 1, For beads
beds, 1, is about 0.5d,, (Koplik et af., 1986; Villermaux and
Schweich, 1992; Villermaux, 1993; De Gennes, 1983;
Carbonnel, 1979) then we get the equation describing the
mechanical dispersion in a porous medium:

(h

D,=a-d,-u=05-d,-u

The effect of molecular diffusion 1s no longer quite
negligible. Saffiman (1959) and Delosselin DeJong (1958)
were the first to highlight this phenomenon from a
modeling of medium using a pores network of equal
length and diameter, but randomized: The fluid inside the
cross section to the flow direction moves very slowly.
Koch and Brady (1985) attributed this phenomenon to the
existence of boundary layers on the surface of particles.
Pomeau (1985) refered to areas of recycling the fluid. All
this leads to a logarithmic correction of axial dispersion
coeflicient:
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— u-d,
D,=o-d,-u+tf-d -u -Ln{ D, ]
A second phenomenon involving molecular diffusion
occurs when the particles of the medium are porous,
absorb the tracer or where there are dead areas where the
fluid velocity is zero (e.g., pores closed). This mechanism
introduces a contribution te U’ in the expression of the

axial dispersion (Bacri et al., 1987; Rigord ef al., 1990,
Villermaux and Schweich, 1992; Han et al., 1985):

u-d,
D,=c-d -u+p-d -u-Ln o +&

m

(u-d )
D

(6)

m

In the case of non-porous spheres, the results are
often correlated as follows:

(7)

D =A-ul

The coefficient B is probably a logarithmic term and
1ts value 13 generally i the 0.8 to 1.5 (Gist ef al., 1990) and
the value of ¢ varies from 0.5 to 2 (Villermaux, 1993).
However, there are media where the characteristic length
of dispersion is much higher than 0.5 dp. This leads to an
abnormal dispersion (Villermaux, 1993).

EFFECT OF HETEROGENEITY OF
POROUS MEDIA ON THE AXTAL DISPERSION

Several phenomena can cause abnormally high
values of axial dispersion in porous media, they are mainly
related to local variations in permeability due to wall
effects and size distribution of the diameter of pores or
particles. Carbonnel (1979) modeled the effect of the size
distribution of pore diameter, he shows that the axial
dispersion increases when the size distribution of pore
diameter increases. Han ef al. (1985) measured the
coefficient of axial dispersion i beds consisting of
spheres and for three size distributions of particles:
spheres of equal size (d, ,.,/d, ., = 1), a distribution with
a ratio (d, ,./d, i, = 2.2) and a distribution with a ratio
(dy mafdy mie = 7.3). They show that the beds of uniform
spheres which correspond to the distribution with a ratio
of 1 are the same results. The areas of distribution of the
ratio on 2.2 cause they dispersed at least twice more
higher. DeArcangelis et al. (1986) have developed a
method for describing the dispersion of a tracer into the
phenomena of molecular diffusion. They apply this
approach to a network of tubes arranged randomly and of
same length m order to study the effect of dispersion
section size of the pores. Villermaux and Schweich (1992)
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and Villermaux (1993) using a method based on fractal
representation of the porous medium. This approach takes
into account the preferential fluid pathways. The authors
define a wildcard pattern representative of fluid flow,
composed of parallel branches, each containing one or
more identical cells. Each cell is replaced by the wildcard
pattern and the procedure repeated to infinity, leads to a
self similar system. The RTD (residence time distribution)
obtained then depend on the number of cells per branch.
If all the branches contain the same number of cells, then
the flow is piston type. On the contrary, if the wildcard
pattern offers paths of different lengths, RTDs are
spreading and could potentially present several peaks or
shoulders. Many of these works relate to the study of
consolidated media for which the effect of heterogeneities
1s very sensitive. The study of these media, often based
on the theory of percolation, generally leads to a
characteristic length of dispersion 1; more than the
diameter of the particles.

METHODOLOGY FOR CALCULATING

Upon the basic properties of neural networks and
acting m the same way our previous work for the
parallelepipedal packing (Hassani et al, 2008a) and
fibrous packing (Hassani et al., 2008b), the development
process of the neural network to calculate the axial
dispersion in spherical beds can be illustrated by the
flowchart in Fig. 1.

Database: We used the database for training the neural
network that 1s generated from the study of Comiti and
Renaud (1989), Mauret and Renaud (1997), Chung and
Wen (1968)and Mall et al. (1976), who worked on the axial
dispersion coefficient in fixed beds of spheres. The
several researchers have used the Fourier analysis
method to calculate the axial dispersion coefficient by the
analysis of experimental curves of the Residence Time
Distribution (RTD) for the flud in the porous medium.
Table 1 sums up the experimental results obtained by
Comiti and Renaud (1989), Mauret and Renaud (1997),
Chung and Wen (1968) and Mall et al. (1976) and the
operating conditions (the nature for fixed beds of spheres,
particles diameter, fluid velocity and Reynolds number).

ARCHITECTURE OF THE NEURAL NETWORK

The idea of artificial neural networks was inspired in
the way biological neurons process information. This
concept is used to implement software simulations for the
massively parallel processes that mvolve processing
elements interconnected in network architecture. The
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Neural network nsed
™~
N Data preprocessing I—.l Correlation equations
rd
Multilayer neural network (MLEP)
a
—4 Network architecture A hidden layer
Z
-Nummber of neurons in the hidden layer|
A meuron in the output layer
Exponential sigmoid for hidden layer
—q Activation finction =
The Linear output layer
~
Levemberg-marquardt
—D[ Learning algorithm ~
Number of iterations
74’}15136 of genera.hmh.on]
—D[ Performance test ]

Fig. 1: Flowchart of procedure for the development of the neural networks to calculate Dax in fixed beds of spheres
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Fig. 2: Representation of generalized neuron formal and multilayer neural network to calculate the axial dispersion mn fixed

beds of spheres

Table 1: Summary of work of (Comiti and Renaud, 198%; Mauret and Renaud, 1997; Chung and Wen, 1968; Mall et af., 1976) on the axial dispersion in

fixed beds of spheres

Equation D,, correlation (m? sec™) and U, in (m sec™)

Authors and reference Particles d, (crm) Re U, (msec™) except for (Eq. 8 in (cm? sec™?) and (cm sec™!)
Comiti and Renaud (1989)  Glass bead 0.499 0.145 2,10 Dax = 1,46 UDW7 [€)]
Plastic pellet a a
29.07 6,2.1073
Mauret and Renaud (1997)  Glass bead 0,221 --- 5,9.104 Dax = 0,14 UD"4X (%
0,397 a Dax = 0,026 U} (10
0,612 3,107 Dax = 0,00685 U™ (1
Chung and Wen (1968) Glass bead 0,25 25 2,107 ePe =0,2+0,01 1Re™* 12
Aluminum ball a a a '
Steel ball 0,635 320 61072
Mall et ad. (1976) Glass bead 0,733 39 210 4 Dax ( dpU, ]0,898 (13)
a a a — =207
1,71 201 6,21073 v vil-g)

artificial neuron receives inputs that are analogous to the
electrochemical impulses that the dendrites of biological
neurons recelve from other neurons. Therefore, ANN can
be viewed as a network of neurons which are processing
elements and weighted connections.
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The artificial neurons are arranged in layers (Fig. 2)
wherein the mput layer receives mputs (si) from the real
world and each succeeding layer receives weighted
outputs (w1.s1) from the preceding layer as its input
resulting therefore a feed forward ANN, in which each
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Table 2: Characteristics of neural networks developed for calculating the Dax fixed beds of spheres

Corniti and Mauret and Chung and Mall et af.
Neural network on the data Renaud (1989) Renaud (1997) Wen (1968) (1976) All work
Data preprocessing (eq.) ) 9aln 12) (13) (8tol13)
Learning algorithm Levemberg/ Levemberg/ Levemberg/ Levemberg/ Levemberg/
Marquardt Marquardt Marquardt Marquardt Marquardt
Number of hidden layer 01 01 01 01 01
Number of neurons
Hidden layer 06 09 09 06 08
Output layer 01 01 01 01 01
Activation function of hidden layer
Hidden layer Exponential sigmoid  Exponential sigimoid  Exponential sigmoid  Exponential sigmoid Exponential sigmoid
Output layer Linear Linear Linear Linear Linear
Number of iterations 250 300 500 100 300
Learning standard (%6) 3.47.107% 3.84.107%° 9.48.107! 5.21.1071 1.10.10710

mput is fed forward to its succeeding layer where, it is
treated. The outputs of the last layer constitute the
outputs to the real world. In such a feed forward ANN a
neuron in a lmdden or an output layer has two tasks:

¢ Ttsums the weighted inputs from several connections
plus a bias value and then applies a transfer function
to the sum

* It propagates the resulting value through outgomg
connections to the newrons of the succeeding layer
where 1t undergoes the same process

The output is computed by means of a transfer
function, also called activation function. It is desirable
that the activation function has a sort of step behavior.
Furthermore, because continuity and derivability at all
points are required features of the optimization algorithms
(Si-Moussa et al., 200%).

The number of neurons in the input and output layers
is determined by the number of independent and
dependent variables respectively. The user defines the
number of ludden layers and the number of neurons in
each hidden layer. Model development is achieved by a
process of tramning in which a set of experimental data of
the independent variables are presented to the input layer
of the network. The outputs from the output layer
comprise a prediction of the dependant varnables of the
model. The network learns the relationships between the
mndependent and dependent variables by iterative
comparison of the predicted outputs and experimental
outputs and subsequent adjustment of the weight matrix
and bias vector of each layer by a back propagation
traiming algorithm. Hence, the network develops a neural
networks model capable of predicting with acceptable
accuracy the output variables lying within the model
space defined by the training set. Consequently, the
objective of ANN modelling is to minimize the prediction
errors of validation data presented to the network after
completion of the traming step.

Although, there 1s contimung debate on model
selection strategies, it 15 clear that the successful
application of ANN in modelling engineering problems is
highly affected by four major factors:

¢ Network type

»  Network structure (number of hidden layers, number
of neurons per hidden layer)

*  Activation functions

»  Traming algorithms

Tt is well established that the variation of the number
of neurons of the hidden layer(s) has a significant effect
on the predictive ability of the network. The most common
way of optimizing the performance of ANN 1s by varying
the numbers of newrons in the lidden layer(s) and
selecting the architecture with the highest predictive
ability (Si-Moussa e al., 2008).

For the spherical packing we implement several neural
networks to study separately the work of each author and
at the end we have developed a single neural network that
enables us to gather all the above studied works. We
apply the inputs of neural networks the 3 major
parameters characterizing the porous medium and the
fluid (diameter, velocity and viscosity). Has the output
of mneural networks is obtamed an only greatness
(axial dispersion). Figure 2 shows the architecture adopted
for all the neural networks.

Table 2 shows the characteristics of neural networks
developed for the work studied by Comiti and Renaud
(1989), Mauret and Renaud (1997), Chung and Wen (1 968)
and Mall et al. (1976) which provides the learning
algorithm, number of hidden layer, number neuron in
hidden layer, activation function, etc.

RESULTS AND DISCUSSION

Figure 3 shows the comparison between the results
given with the neural method and the study of Comiti and
Renaud (1989), Mawet and Renaud (1997), Chung and
Wen (1968) and Mall et al. (1976). One finds in Fig. 3 that
the scattering of axial dispersion in fixed beds of spheres
determines from the neural network versus the velocity
inside the empty coincides perfectly with the wvalues
estimated by the correlation equations given by Comiti
and Renaud (1989), Mauret and Renaud (1997), Chung
and Wen (1968) and Mall et al. (1976) despited the large
difference of the results in their study, which shows the
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Fig. 3: Axial dispersion calculated by the neural network

power of the neural model. A single neural network can
cover the entire range of axial dispersion resulting from
the studied works.

The analytical process of the cloud points of the axial
dispersion calculated versus the velocity (Fig. 3), on one
hand we showed that the phenomenon i1s even more
important than the velocity of the fluid is high, on the
other hand a strong dependence of the axial dispersion
coefficient to particle diameter and fluid viscosity. Indeed,
phenomenological view yields an increase of kinematic
viscosity of the fluid causes slightly increase in axial
dispersion, this 1s probably due to the fact that in the
upstream part of the spherical particles where the flow is
facilitated and the boundary layer 1s less tlunmer than it
would n the downstream part, so there 1s separation of
the boundary layer and as a result of the pressure
gradient, it occurs a flow in the opposite direction to
normal flow which radically changes the distribution of
traffic speeds and pressures and therefore the formation
of walke vortices and everything depends on the criterion
of Reynolds. Sinilarly, an increase in the particle diameter
causes a net increase of axial dispersion coefficient, due
to the dimensions of wakes and vortices that are formed
i the downstream of the spherical particle after the
separation of the boundary layer that depends on the flow
state and the particle size, rather than the size is larger
along the wake and the intensity of wakes are larger
therefore, the axial dispersion coefficient is important.

Figure 4 shows the comparison of the values of the
coefficient of axial dispersion desired given by the
equations of correlation of the Comiti and Renaud (1989),
Mauret and Renaud (1997), Chung and Wen (1968) and
Mall et al. (1976) and the values of axial dispersion
calculated by the neural network.

There 1s an mnterval of two ranges of errors:

|

DHX )NN

R_E—IOO[I— ( (14)

ax)daslrad
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Speed in empty : Uo en (m sec ')
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Fig. 4. Histogram of the percentage of error between the
values of axial dispersion calculated by the neural
network and the values given by the equations of
correlation of the (Comiti and Renaud, 1989,
Mauret and Renaud, 1997; Chung and Wen, 1968,
Mall et al., 1976)

0.501
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[ ]
040{ B H
-
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2035 * ofly
w
] A
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0.257 .ﬁ
L
0.204 L]
L
0.15 T 7 U T 1
0 150 300 450 600
Reynolds: Re

Fig. 51 Values £.P, obtained by the neural method, versus
Reynolds number for fixed beds of studied
spheres

a range with a relative error greater than 10%
(10% <RE<40%) corresponds to a low speed range
where the large dispersion of results of previous work
{(used as a database of learming), causes damage accuracy
of neural network and a beach with an error less than
10% on a range of relatively high speed. These two
behaviors are distinctly different with a dimensionless
representation:

ePe, =1 (Re) (15)

as shown and confirmed in Fig. 5, where there is a
decrease with Re and growth, hence the existence of a
minimum of 0.25 which corresponds to RE = 25.
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CORRELATION OF CALCULATION RESULTS
From the obtained results with the neural method,
authors suggested two forms of dimensionless

correlations that are shown in Table 3:

¢ The first form is similar to the correlation equation of
Chung (Eq. 12):

ePe = a+bRe™™® (16)
*»  The second is a new correlation form:

cPe= o+ % + ym (17)

Empirical constants (a, b) and (¢, p and v) are
calculated sequentially from the results obtamned by
different developed neural networks.

0.507
-
0.457
0.407
o5 0.357]
» f
0.307
0.257
1 ' ® ¢P,; by neural method
0.20 — £P.; by the model of Chung and Wen
L -
— &P.; by the model proposed
015 T T L] L] L]
0 150 300 450 600
Reynolds: Re

Fig. 6 Validation of the proposed model (Eq. 24) and its
comparison with that of Chung and Wen (1968)
(Eq 12)

Table 3: Correlation equation suggested from the neural method

For the new form of correlation (Eq.17), the exponent
0.48 of the Chung relationship (Eq.12) 1s adjusted such as
we get a fractional exponent (1/2) further we show an
additional corrective term that 1s a random error 1s added
to the classic phenomenon of axial dispersion which takes
into account all the results. This correction term {1/ {fRe )
is more important than the velocity of the fluid is low. This
behavior can probably be attributed to the parameters of
porous structure (tortuosity, specific swurface area,
porosity and permeability) which form the fixed bed.

Figure & shows the validation of the proposed model
for all the work (Eq. 24) and its comparison with the
correlation of Chung (Eq. 12).

Figure 7 shows the validation of the new form for the
proposed correlation (Eq. 31) andits comparison with

0.55]
0.507
0.457
0.407
% 0.35
0.304 & EFP.byneural method
& £F,by the model of Chung
0.237 ® &P,by the model of proposed
€ P, by the model of Mauret
0.20 [] w £P,by the model of Cormti
L) = £ P,; by the model proposed
015 T T T T 1
0 150 300 450 600

Reynolds : Re

Fig. 7: Validation of the proposed model (Eq. 31) and
its comparison with models of Chung and Wen
(1968) (Eq. 12) Mauret and Renaud (1997) (Eq. 9 to
11), Mall et al. (1976) (Eq. 13) and Comiti and
Renaud (1989) (Eq. 8)

News from correlations proposed method neurenal form:

Study Proposed correlation equations firom the neuronal method 2. Py =10,732 - 0,193 Re™®
Comiti and Renaud (198%) £Pe, = 0,307 +0,006 Re"® (18) ePe = 0,314 0.03 +0,0043 yRe (25)
iRe
_ b 0,425
Mauret and Renaud (1997) ePe,= a + —— + c.fRe 19 ePe, = 0,4+ - 0,0664Re (26)
YRe ! iRe
ePe; = 0,528 0.05Re*™ 2 ePe = 0,46+ 0211 0,0295 yRe 2N
e
0,48 0,298
ePe, = 0,339+ 0,033Re™ 20 ePe = 0,39 +0,0202 Re (28)
iRe
0,48 0,05
Chung and Wen (1968) ePe, = 0,203+ 0,0107Re " (22) £Pe, = 0,208 — —— + 0,0093+/Re (29)
JRe
Mall et cd. (1976) ePe, = 0,33 +0,019Re"* (23) ePe = 0,34 - 003 +0,0164 yRe (30)
iIRe
1 112
All work ePe = 0,2+ +0,011 Re™® 24 ePe, = 0,197 + —== + 0,01/Re (31)
' iRe JRe
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the models of Chung and Wen (1968) (Eq. 12) Mauret and
Renaud (1997) (Eq. 9to 11), Mall er al. (1996) (Eq. 13) and
Comiti and Renaud (1989) (Eq. 8).

CONCLUSION

This study validates the neural network method
adopted for calculating the coefficient of axial dispersion
in fixed beds of spherical particles. The mean values of
criterion  interstitial Peclet calculated by the neural
method correspond to the order of magnitude expected.
If it refers to works consulted by Comiti and Renaud
(1989), Mauret and Renaud (1997), Chung and Wen
(1968) and Mall et ai. (1976) can estimated that the
neural method for calculating gives very satisfactory
results and representative of the phenomenon of axial
dispersion.

NOMENCLATURE

ANN = Artificial Neural Networks

b = Bias

Dax = Axial dispersion coefficient (m® sec™)

(Dax) g = Axial  dispersion  coefficient desired
{m’sec™)

(Dax)yy = Axial dispersion coefficient calculated by
the neural method (m® sec™)

D, = Molecular diffusion coefficient (m? sec™")

dp = Equivalent diameter of sphere (m)

DRT = Distribution of the residence time

F = Form factor

1y = Characteristic length of dispersion (m)

Pe, = Peclet number of interstitial

Re = Reynolds number

RE = Relative error

8 = Qutput neuron

t = Time (sec)

u = Average speed of movement of the fluid
{m sec™ )

u, = Superficial velocity (m sec™)

U, = Speed in empty (m sec™")

W, = Synaptic weights of neuron

X, = Input of the neuron

o, P = Settings

€ = Porosity of the bed

o = Hlectrical conductivity of porous medium

o, = Hlectrical conductivity of the fluid

T = Hydraulic tortuosity

Ty = Temps caractéristique de dispersion (3)

T, = Tortuosité électrique

v = Fluid viscosity
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