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Contribution of Kernels on the SVM Performance
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Abstract: The Support Vector Machines (SYM) are leaming supervised techmques developed by Vapnik. Their
learning, has its roots m the statistical theories with discrimination based on a linear separation in an adequate
dimension space. The change of dimension is done through kernel function, which must be chosen from
several. In order to evaluate the contribution of the choice of kernel on the SVMs performance, we conducted
a classification of a satellite image representing the western region of ORAN, in ALGERTA, with varying kernels

and their parameters.
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INTRODUCTION

The Support Vector Machines (SVM), are statistical
technique uses on pattern recognition. Their decision or
discrimination function represented by a linear separator
(straight line, plane or hyper plane). Among the multitude
of linear separators may be used, the SVM seek the most
optimal one, presenting the bigger distance between the
two classes (Vapnik, 1998; Harris et al., 1999, Massih,
2001).

However, data can be not linearly separable; in this
case, the force of SVM resides on the use of kernels
functions that make a projection, implicitly, to a larger
space. In other way, these functions must be selected and
configured by the user (Cormujols, 2002; Callut, 2003;
Lauer and Bloch, 2006; JToachims, 1998, 2002).

Thus and to assess the influence of kernel in the
SVM performance, we conducted a classification of a
satellite image (Fizazi et al., 2001, 2008) by varying kernels
and their parameters from Laplacian to polynomial passing
through the Gaussian.

MATHEMATICAL FOUNDATIONS OF SVM

The SVM are, by their nature, a binary classification
techmque. However, the use of different strategies or
approaches has extended their use to the multi-class
classification (Devy, 2003; Moutarde, 2007).

Binary SVM: In the case of a bmnary classification, we
consider a set of m data vectors which are associated to
labels ti € (-1, 1) representing their classes. On this dataset

¢ (x)

Fig. 1: Linear separation after projection into a bigger
space

and to ensure a lmear separation, the SVMs perform a
projection to a larger space F as shown Fig. 1. This
projection is done through a non-linear function @ (x) as:

¢: R-F

The separator line h(x) of all projected data will be
characterized by a normal vector w, a threshold b and a
fimction h (x) = wt. ¢ (x) + b which will be used to define
the class ti of a new example e as: ti = sign (wt. ¢ (e) +b).

The construction of the separator line h(x) must meet
to a primary requirement: the maximization of the margimn.
The margin represents the distance between the nearest
vectors called the support vectors. In another way, margin
value is inversely proportional to the norm of w (1)
(Vapnik, 1995, Fizaz et al, 2008). Consequently, the
search of the optimal linear separator can be resumed by
an optimization problem: Min 1/2 w* under the constraint
that all data are correctly positioned relative to the linear
separator, which gives: vV 1tih (x) = 1.

In order to simplifying the constramnts that are
considered heavy, we solve the optimization problem by
its dual using the method of Lagrange with introducing
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variables oi called the Lagrangian variable. The «i
representing the contribution of an x1 element m the
construction of the separator line h (x), So, only the «i
corresponding to the support vector are not nil . Thus, We
obtain T, (w, b, &)

1 PR .
MIHEHWH 721:0{‘.[(“1 .(I)(X])‘Fb) .tfl} )

a,=20i=1.m
So, we have to minimize L. (w, b, &) according to w, b

and maximizing it according to "’. Thus, we search the
extreme of L (w, b, cr):

3L{w.b,c) . = (2)
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From Eq. 2 and 3 we can rewrite the decision function
h (x) as h (x) Z'eciti@ (x1).¢ (x)+b and transcribe,
through L. (w, b, ) the optimization problem to their dual:
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Thus, the search of the optimal linear separator
became a quadratic programming problem where the i are
computable and b, w deducted.

However, we can note a difficulty in calculating the
scalar product ¢ (x)-¢ (x). This difficulty will increase with
mcreasing the dimension of projection space. For this
raison, the use kernel functions k (x, y) as: K (x, y) = @ (x ).
@ (y) which do the projection implicitly. The expression of
optimization problem expressed in Eq. 4 became as
follows:
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=
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(3)

The main kernel functions used are given in the
Table 1.

In practice, it’s impossible to classify correctly all
data. For this reason Vapnik proposed an upper limit for
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Table 1: The main kemel form

Kernel Generic form Parameters
Laplacian K €x, v) = exp (-]x-y]| /&) &: Standard deviation
Polynormial K (x, ) =exp (x-y+1)F p: Polynomial order
Gaussian K &, ¥) = exp (-]|x-v]%2.5%) &: Standard deviation

Lagrangian multipliers «i (Vapnik, 1998) . This limit, called
the regularization constant C, represents a compromise
between the maximization of the margin and the
minimization of the error. So, the optimization problem
becomes:

1
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i=l
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(6)

THE MULTI-CLASS SVM

The application of SVMs to classification containing
k classes, k>2 requires an mcrease i the number of binary
classifiers (Fizazi et al., 2001, Ouamri et al., 2009). The
management of different classifiers obtained can be done
thought two strategies one agamst one or one against all
(Guermeur, 2007):

The one against one strategy, consists to design all
the possible binary classifiers, so, for k classes we
have k (k-1)/2 classifiers. To assign an element e to a
class, e must be tested with all classifiers designed,
whenever e is assigned to a class; we increment a
counter 1 associated to it (i 18 mnitially set to zero). e
will be assigned to the class that presents a maximum
value of a counter

The one against all approach consists to oppose
each class 1 to the k-1 and,
consequently, develop k binary classifiers. To assign
an element e to a class, e must be tested with all the
classifiers. e will be assigned to the class which
presents the maximum value of the decision function
at the point e

other classes

IMPLEMENTATION AND RESULTS

In present study, we applied SVM to the
classification of a satellite image captured by LANDSATS
Thematic Mapper TM. This satellite image represents the
western region of ORAN in ALGERIA on March 15, 1993
at 9 am 45 mn. Data of this study area have been provided
by the Spatial Researches Center Arzew-Algeria. The area
concerned by our studies is marked in red in Fig. 2.
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Fig. 2: Satellite image of Landsat5 TM representing the region of Oran in the west of Algenia
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Fig. 3: The different the regions (classes) in the study area

This study area was chosen for its varied classes
(12 classes) which can present’s an interest for our
studies (Fizazi et al., 2008).

We started our application by loading tree images
corresponding to the channels TM1 TM3 and TM4. To
facilitate the use of these images, we started the treatment
by madding a contrast enhancement and a color
composite with combimng the blue filter to charmel TMI,
the green filter to charmel TM3 and the red filter to
channel TM4. On, the resulting image we can identified
twelve different classes identified using the thematic
knowledge. The different classes present on the 1mage are
shown in Fig. 3.

833

Table 2: Results obtained with the Polynomial kemel

Tests Parameters Recognition rate (%)
1 p=2 62.82
2 p=3 63.50
3 p=3 63.93

Using owr thematic knowledge, we built too, our
traming set which contained the same number of
representatives from each class presents in our area
study. Subsequently, ow traming set contained 840
tri- dimensional vectors (TM1 TM3 TM4).

The tramning set constructed, we fix the compromise
C between the maximization of the margin and the
minimization of the error at 500 in order to compare
equitably the different kernels functions. In another way
and since to the number of classes (12 classes) we have
chosen the one against all approach to mimmize the
number of classifier

Tests and results obtained with polynomial kernel: In this
test, we varied the order of the polynomial kernel from 2
to 5. The obtained results are resumed in the Table 2. In
another way the Fig. 4 shows the better and the worse
resulting images.

Thus, the various tests did with the polynomial
kernel, show that increasing of the polynomial order
increases the recognition rate. However, it is important to
note that this increase is mimmal (from p=2top =5 we



J. Applied Sci., 10 (10): 831-836, 2010

Fig. 4: Resulting images of test 1 and 3 using the polynomial kemnel (from left to right). (a) Result of test 1 (much
confusion) and (b) result of test 3 (very little confusion)

obtained an increase of 1.11%). These results can be
explained by the fact that an order p of the polynomial
kernel induce that the vectors will be projected in a space
with (n+p)!/n!p! dimension such as n represents the initial
space dimension (Ben Ishak, 2007). Thus, the test 3 gave
the better results since over the projection space 1s
increasing the separability of data increases too. In
another way, the test 1 gave poorer results because its
projection space 1s less than the test 3 one.

From the Fig. 4a resulting from the test 1 of the
Polynomial kerel, we can note, a lot of confusions and
that specially in the classes: wban, fire management,
fallow sebkha?2, sand and bare soil with an over estimation
of the class forest.

From the Fig. 4b resulting from the test 2 of the
Polynomial kernel, we can see confusions in the classes
sebkha?2, sand and bare soil with a decrease of the over
estimation of the class forest and the augmentation of the
recognition on the class bush.

To summarize obtained the results, we can say that
the augmentation of polynomial order, increases the
recognition rate but did not remove the confusions. This
relation between the polynomial order and the recognition
obtained by other
applications such as: the recogmition of handwritten
numbers by SVM (Nemmour and Dibounce, 2007) or the
results obtained by hybridization of SVM with other
methods such as K-Means (Houcini, 2009).

rate confirmed the results

Tests and results obtained with gaussian kernel: For this
test, we varied the Gaussian standard deviation from
0.1 to 1. The obtained results are resumed in the Table 3.
In another way the Fig. 5 shows the better and the worse
resulting images.

From the Table 3, we can note that the increase of
Gaussian standard deviation decrease the recognition
rate. Thus, the best recognition rate was done with a
Gaussian standard deviation fixed at 0.1. These results
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Table 3: Results obtained with the Gaussian kernel

Tests Parameters Recognition rate (%)
1 5=01 74.51
2 8§=0.5 64.98
3 85=01 62.83

can be explamed by the fact that the number of the
support vector 18 inversely proportional to the value of
standard deviation (Loosli, 2004). Thus, a standard
deviation at 0.1 allows us to draw a separator with greater
precision. In another way, a standard deviation at 1 gives
a less accurate separator

On the Fig. 5a resulting from the test 1 of the
Gaussian kemel, we can note, that the fixation of the
Gaussian standard deviation at 0.1 gave confusions
principally situated at Sebkha2, market-gardemung, sand
and bare so1l.

On the Fig. 5b resulting from the test 2 of the
Gaussian kernel, we can see the disappearance of the
classes Sebkha2, sand and bare soill with an
overestimation of the cereal at the expense of the classes
fallow and bush.

To resume the obtained the results with this kemel,
we can say that increasing the Gaussian standard
deviation has decreased the recognition rate with the
disappearance of some classes and an over estimation of
another. This relation between the Gaussian standard
deviation and the recogmtion rate confirmed another
results obtained on different applications such as: the
recognition of handwritten numbers by SVM
(Nemmow and Diboune, 2007), the interpretation of
medical mmage (Achour and Sahli, 2006) or the results
obtained by hybridization of SVM  with K-Means
(Houcim and Tarkani, 2009).

Tests and results obtained with laplacian kernel: For the
Laplacian kernel tests, we varied the Laplacian standard
deviation from 0.1 to 1. The obtained results are given in
the Table 4. Tn another way the Fig. 6 shows the better
and the worse resulting umages.
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Fig. 5: Resulting images of test 1 and 3 using the Gaussian kemmel (from left to right). (a) Result of test 1{(presence of

confusion) and (b) result of test 2 (no confusion)

Fig. 6: Resulting images of test 1 and 3 using the Laplacian kemel (from left to right). (a) Result of test 1 (little confusion)
and (b) result of test 2 (reduced quality of classification)

Table 4: Results obtained with the Laplacian kernel

Tests Parameters Recognition rate (%)
1 §=01 75.29
2 8=0.5 74.87
3 85=01 74.45

The first test of the Laplacian kernel was done with a
standard deviation fixed at 0.1. This test gave the best
recognition rate (75.28% against 74.51 for the Gaussian
kernel). In another way; the increase of the Laplacian
standard deviation has decreased the recognition rate.
Such as the Gaussian kernel, the number of the support
vector 18 inversely proportional to the value of standard
deviation (Loosli, 2004). Thus, a standard deviation at 0.1
allows us to draw a separator with greater precision and
the standard deviation fixed at 1 gives a less accurate
separator.

From the Fig. 6a resulting from the test 1 of the
Laplacian kernel, we can note that the test done with a
standard deviation fixed at 0.1 presents some confusions
at the classes Sebkha 2, market-gardening, urban, sand
and bare soil.

From the Fig. 6b resulting from the test 2 of the
Laplacian kernel, we can see that ncreasing the Laplacian
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standard has reduce the quality of the classification on
the image and its recognition rate but the confusions are
located m the same classes.

To summarize the obtained the results with this
kernel, we can say that mcreasing the Laplacian standard
deviation has decreased the recognition rate confusions
located in the same classes. This relation between the
Laplacian standard deviation and the recognition rate
were confirmed by the hybridization of SVM with
K-Means (Houcini and Tarkam, 2009).

CONCLUSIONS

In order to evaluate the importance of the kemels
on the SVM performance. We applied the Support
Vector Machines to the classification of satellite images
(a combination of tree images corresponding to the
channels TM1, TM3 and TM4) representing the western
region of Oran, by varying the kemels and their
parameters.

Thus, we did different tests using the Polynomial,
Gaussian and Laplacian kernel. The main conclusion of
our experimentation 1s the sensitivity of the SVM to the
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choice of the kernel function and its configuration. So, the
kernel function must be considered as an influent
parameter on the performance of the SVM.

Consequently, the most important difficulty on using
SVM is also its greatest strength, the kernel functions.
This difficulty is amplified by the absence of algorithms
that can configure the type of the kemel function
automatically.
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