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Abstract: In this study, we expressed an algorithm for nonlinear system 1dentification based on modal series.
Modal series is basically a method for solving nonlinear differential equations. Modal Series analysis of

nonlinear systems could have found several new applications. The ability of this approach in using of linear
system analysis rules for nonlinear systems attracts researchers to this method. In this study, a new form of
modal series which 1s suitable for identification purposes has been presented and then an algorithm which uses
this representation of modal series and a subspace identification method has been illustrated for identification
of a modal series model of nonlinear systems. Simulation results expressed the efficient ability of this approach

n 1dentification of nonlinear systems.
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INTRODUCTION

Subspace 1dentification 13 by now a well-accepted
method for the identification of multivariable Linear
Time-Tnvariant (I.TT) systems. In many cases these
methods provide a good altemative to the classical
nonlmear optimization-based prediction-error methods
(Ljung, 1999). Subspace methods do not require a
particular parameterization of the system; this malkes them
numerically attractive and especially swutable for
multivariable systems. Subspace methods can also be
used to generate an initial starting point for the iterative
prediction-error methods. This combmation of subspace
and prediction-error methods is a powerful tool for
determining an LTI system from mput and output
measurements. Unfortunately, in many applications LTI
systems do not provide an accurate description of the
underlyimng real system. Therefore, identification methods
for other descriptions, like time-varying and nonlinear
systems, are needed In recent vyears, subspace
identification methods have been developed for certain
nonlinear systems: Wiener systems (David and
Verhaegen, 1996, Chou and Verhaegen, 1999),
Hammerstein systems (Michel and Westwick, 1996),
bilinear systems (Huixin and Maciejowski, 2000) and LPV
systems (Vincent and Verhaegen, 2001).

Subspace 1dentification methods for LTI systems can
basically be classified into two different groups. The first
group consists of methods that aim at recovering the
column space of the extended observability matrix and use
the shift-invariant structure of this matrix to estimate the

matrices A and C; this group consists of the so-called
MOESP methods (Verhaegen and Dewilde, 1992;
Michel, 1994).

The methods in the second group aim at
approximating the state sequence of the system and use
this approximate state in a second step to estimate the
system matrices; the methods that constitute thus group
are the N4SID methods (Moonen et al, 1989, Van
Overschee and de Moor, 1994, 1996), the CV A methods
(Larimore, 1983; Petemell ef af., 1996) and the orthogonal
decomposition methods (Katayama and Picci, 1999).

Pariz and Vaahedi (2003) has presented a new
approach for analysis and modeling of nonlinear systems.
Abdollahi (2002) expanded this approach for analyzing
and modeling of continuous and discrete nonlinear
systems. Modal series can expressed a nonlinear system
in a new form which is more accurate than the linearized
model of system and expresses many nonlinear effects of
main system (Chen et al., 2010). This new modeling
structure of nonlinear systems can be used to identify a
nonlinear system effectively.

In this study, we present a new method to determine
a modal series state space model from a fimite number of
measurements of the inputs and outputs. The method was
inspired by the subspace identification method for linear
systems (Katayama and Picc1, 1999; Moonen et al., 1989)
and 1s based on modal series (Abdollahi, 2002).

In this study, a short and simplified summary of
subspace identification method for linear systems is first
llustrated. Then, the modal series presentation of
nonlinear systems 1s summarized. We then introduce a
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new representation of modal series which is more suitable
for 1identification purposes. Based on the results
presented, an algorithm for identification of nonlinear
state space systems is then expressed. The presented
technique 1s 1llustrated for a simple example of a nonlinear
system using computer simulations.

REVIEW OF LINEAR
SUBSPACE IDENTIFICATION

Comnsider an observable linear state space system:
Xy = AX, + Bu, (1)

y=Cx (2)

Subspace identification (Michel and Westwiclk, 1996;
Moonen et al., 1989) is a computationally efficient method
to determine from input and output measurements a linear
state space system up to a similarity transformation; it
provides estimates of the matrices A, = TAT™, B.= TB
and C; = CT ' where, T is a square nonsingular matrix. In
a nutshell, subspace identification consists of three steps:

Step 1: Remove the influence of future inputs

We want to reconstruct the state sequence x,. Tt is
easy to see that the following equation holds.

C
CA
7 =|- Xy

bA“
— (3)
0 0 0y
N
‘ CA-”B CA-“B éB | uk;d-l

Hy

where, d=n+1. The first part, I, is the response of the
system from time k to time k+d-1 due to the initial state x,.
The second part 1s the response due to the future
nNputs W, W , ..., Weg. 10 Teconstruct the state x, we
have to remove the influence of the future inputs. Tf the
Markov parameters of the system are known and hence
the matrix H,; is known, we can simply do this by
subtraction:

=Gx, 4)

The vector Z can be viewed as the response of the
system due to the initial state x, with the input switched
off. Note that there exists a clever way to remove the
influence of the future inputs without the need to know
the matrix Hy. This is done by using a linear projection as
described by Katayama (2005).

Step 2: Reconstruct the state sequence

Let us store the vectors Z.  constructed in the first

step mto following matrix.

Z,=[2, %, - Zay]. No»d (5)

By computing Singular Value Decomposition (SVD)
of this matrix, we can reconstruct the state sequence:

X =[% Ken - K], N»d ()]

up to a linear state transformation T. Let the SVD of Z
be given by:

7, =USV" (7
Then the reconstructed state is given by:
%, —§7VT = TX, (&)

Note that the number of singular values in S
determines the dimension of the state vector. In general
the dimension of the state vector x, will be less than the
dimension of the delay vector Z;.

Step 3: Estimate the model

We use the time sequences v, w, and %, to determine
the matrices A, Brand Cr. Tt is easy to see from the Hq. 1
and 2 that this boils down to solving a linear least squares
problem.

MODAL SERIES

As expressed by Pariz and Vaahedi (2003) Abdollahi
(2002) and Shanechi and Vaahed: (2003) any nonlinear
system which 13 in the form of:

x=g(x,u) 9
where, x = [x, X, ..., %]  is the state vector,
u=[u, U, ...,u,]"is the input vector and g: R"<R™">R” is
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a smooth vector function which g(0,0) = 0, can be
modelled by Eq. 10 and 11 called modal series.

=Y+ Sw, 0+ Sz, (10)

i=l j=1

v (t+1) =B, v ()
V(0 Byvi (1)

v,(t+1) = By, () +— (10a)
v (0T By v, ()
w,(t +1) =B, w(t) + Bu(t)
) w, (1) Byw, (1) | | w, (1B u(t) ) ut)" Byu(t)
w,(t +1) = Byw,(t) + — : + : +— :
2 Tnpn Tn 2 Tpn
w (1) Byw, (1) w, () Bju(t) u(t)’ Byu(t)
(10b)

2y (E+1) =Bz () +—

vl(t)TBéuwl(t)+w1(t)TB£uv1(t)] r(t)TBhu(t)]
M + M

vy (1) BRw (0 +wy (0 BSv (1) | | v (1) Bfut)

(10c)

v, (t=0)=x{0)

vi(t=0)=0 i=23,. (11)
wit=0)=0 j=123,.

Z(t=0)=0 i=123.., j=12.3,..

where,
dg dg T
o= gy ket B =5 ke B = 55l
B = azgl | i ang |
" gxou 2T dudu a0
and so on.
Remarks:

¢+ FEquations 10 are categorized in three classes in
Eq 10a-c

* Class m Eq. 10a 1s affected by the mitial condition
and is the zero input response of the system

¢ Class in Eq. 10b is affected by the input and is the
zero state response of the system

¢ Class in Eq. 10¢ is affected by both initial condition
and input. Tt is the interaction between initial
condition and mput and differs from zero when both
of them do exist

¢ In linear systems the complete response of a system
15 equal to sum of its zero input and zero state
responses, but this is not the case for nonlinear
systems, because of the existence of equations class
inEq. 10¢

»  Modal series method provides a solution for the
system in terms of the modes of the system and the
input. This can be better seen if we apply the
transformation x = Ty, where T 1s the matrix of the
right eigenvectors of B,;, use modal series approach
to yield the solution and use back transformation
vy = T7'x to obtain the solution of Eq. 10

Extension to discrete modal series 15 straight and it
will bring us to similar equations (Abdollahi, 2002).

A MODIFTIED REPRESENTATION OF MODAL
SERIES MODEL OF NONLINEAR SYSTEMS

Definition: For matrices P and Q@ with dimensions n xm,
and n, *m, , respectively, the Kronecker product is defined
as a (n,n,)*(m,m,) matrix:

PpQ - P1me
P®Q=| @ : (12)
PpaQ o P, Q

We define the superscript notation ® and (p) for
referring to Kronecker product and the repetitive
application of the Kronecker product, respectively.

Now we can express that the class a deals with
transient states of nonlinear system which depends on
mmtial conditions. We can neglect transient effects and
assume zero imitial condition for class v when we want to
identify nonlinear system. Since, class in Eq. 10c depends
on class in Eq. 10a and b and class in Eq. 10a states are
assumed zero, so class in Eq. 10¢ are zero, too. Then we
can rewrite the discrete modal series in the form of

Eq. 13. Where A, B, B, ... andu,, u,... are defined by

Eq. 14and 15.
x(t)= Sw, (13)
w,(t+1)= Aw, (1) + B, (1) (13a)
w, (t+1) = Aw, (1) + B,u, (1) (13b)
u, (1) = u ) (14a)
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u(e)
Cz (t) = |: }
wb) (14b)
(0= L0 & L= L2
A=B, (15a)
B, =By, (15b)
B, = Coefficients Matrix of Cf’ (15¢)

It 1s supposed that the nonlinear system 1s linear in
output equations. It means:

¥(t) = Cx(t)+ Du(t)

%
= CEwk(t) +Du(t) (16)

= Cw, (1) + Du(t) + %ka(t)

7l k=2

Tl
where, K 1s the maximum number of modal series terms.
So, output of each w, equation is as follows:

¥.() = Cw, (D) + Du®) (17a)

Yty =Cw, (D) (17h)

k=23,..

Looking at Eq. 13a, b, ... implies that inputs (u,(t),
k=2.3,. . )for w(t) (k=2,3,...) state equations, rely on
w,(t-1)(=k-1, k-2,... 1) and u,(t-1).

Since, it is possible to construct {,(t) and then the
mput vector u, of every w, equation for every sample
time, it is clear that Eq. 13a,b ... are linear. w, is in fact the
linear mode] of nonlinear system and all other terms try to
model nonlinear dynamics of the main nonlinear system.

Now we can express that there are a set of equations
i the form of Eq. 18 which can approximate the main
nonlinear system.

W, (t+1) = AW, () +B,u, (D) (18a)

¥, (£ = Cw, () + Dyu(t) (18b)

where, D, =D and D, = O for k = 2,3,... . And the main
state vector can be computed by Eq. 13a.

Tn an identification problem for nonlinear systems, we
can identify Eq. 18a,b as an approximation of nonlinear
systems. This would be very flexible method, since we can
choose arbitrary number of modal series terms (w;) to be
identified.

912

Because of the state space form of this model of
nonlinear systems, we proposed to use a modified version
of a subspace algorithm.

MODAL SERIES IDENTIFICATION BASED ON
SUBSPACE ALGORITHMS

The objective is to estimate, from measured

input/output  data  sequences ({u(t)} and {y{t)},
respectively), a series of systems described by:
W, (t+1) = Aw, (1) +B,u, (£) +n(t) (19a)
v, (D)= Cw, () + D, (1) + (1) (19b)
Which u, 1s defiened by Eq. 14. And:
n _|Q s (20)

o o 2

Using one of subspace identification Algorithms
(N4SID, MOESP, CVA), we can suggest the following
algorithm to identify a modal series model of a nonlinear
systermn.

£ R

Algorithm:
Step 1: Set y,(t) = y(t), wt) = u(t), k = 1 and choose an
arbitrary number of modal series terms (K,,)
Step2: Apply one of the subspace identification
algorithms to the following linear system and
1dentify system matrices (A, B, Cand D,)
w,(t+1) = Aw, (0+ B, () + () (21a)
v,(t) = Cw, () + Dy, (£) + £(t) (21b)
Step 3: Produce w, a nd vy, using identified linear
model
Step 4: Set k = le+1 and produce y,(t) and uJt) using
Eq. 22 and 14, respectively
k-1
¥ (0 =y - ¥y, (0) (22)
i
Step 5: Usmg A and C estimated i step 2, estumate B,

and D, of the following linear system

w, (t+1) = Aw, (1) + B, (£) + () (23a)
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v, (0= Cw,(t)+ D, u, () +£(t) {(23b)

Step 6: If k<K, (number of modal series terms) go to
step 3 else go to step 7
Step 7: End of algorithm

SIMULATIONS

The example system was described by Narendra and
Parthasarathy (1990) as an example for the use of neural
networks to model dynamical systems. Junhong (1994)
used this example to demonstrate the dynamic modeling
capabilities of neuro-fuzzy networks and Anass et al.
(1999) used it with local linear fuzzy models. The
mput-output description of the system 18 described by
Eq. 24.

For identification, a multistep input signal shown n
Fig. 1 was used; the steps in this signal had a fixed length
of 10 samples and a random magnitude between -1 and +1,
determined by a uniform distribution.

To assess the quality of the model, a validation data
set was generated using the input signal described by
Eq. 25.

In Fig. 2, simulation results of a linear model of
example system has been illustrated. This linear model has
been estimated by an implementation of MOESP subspace
algorithm in MATLAB7.

In Fig. 3, there are sumulations for identified two term
modal series model using the proposed algorithm. The
suggested algorithm has also been implemented in
MATLAB7? and makes use of MOESP identification
algorithm.

The mean square error for linear model 15 0.0077 and
for modal series model 15 0.0012. Therefere, Sunulation
results express that the proposed algorithm can be used
for identification of every smooth nonlinear system. We
can 1mprove identification of nonlinear system by
choosing sufficient number of modal series terms and
more effective subspace identification algorithms.

X, (t+1) =%, (1) (24a)

%, (t+1)=x,(1) (24b)

k(s 1) = BUBOLOI-X OO0 (0
L+ x} D +x2 (1)

() =x,(t) (24d)

u, (G=u, (1) (25a)
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Fig. 1: Multistep random signal used for identification

Linear model

W
]

"

x it
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Fig. 2: Validation of identified linear state space model
using subspace algorithm

= Nonlinear simulation == Identified model

¥ andyhat

Time (sec)

Fig. 3: Validation of identified two term meodal series
model using proposed algorithm

sin( 2% 1< t<500
u, - 250 (25b)
0.8sin(2™ + 0 26in(2% S01< (<800
250 25
CONCLUSION

A new algorithm based on modal series and subspace
identification algorithms has been illustrated in this
paper. Actually, a novel approach for nonlinear system
modeling and identification has been mvestigated. In
attention to simulation results and theoretical analysis, we
can mtroduce this approach as an effective and strong
method for identification of nonlinear systems. Future
works may consider using of this method for control

purposes.
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