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Initial-boundary Value Problem for Some Class of Nonlinear
Degenerate Pseudo Parabolic Inequalities
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Abstract: In this research, we study nonlinear pseudo parabolic inequalities with mitial-boundary conditions.
We show that if the nonlinear operators satisfy in some conditions then the pseudo parabolic Inequalities has
a unique solution.
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INTRODUCTION

Let Vbe a Branch space and K<V be a nonempty,
closed convex subset of V. The main problem is finding
uekK such that for all veK:

(Au, v-u)=(f, v-u) (1

where, A:V - V' and feV'

This type f inequalities of elliptic and parabolic
variational problem for monotone operators were
mvestigated (Evans, 1998). Ptashnyk (2002) studied
pseudo parabolic variational inequalities for nonlinear
operators and proved some existence and umiqueness
theorems for their solutions. Showalter and Ting (1970)
have investigated elliptic and parabolic mequalities for
pseudo monotone operators (Ptashnyk, 2004). These
mequalities appear in the study of the free boundary
problems (Cufner and Fuchik, 1998, Showalter, 1997).

The present research studied initial-boundary value
problem for pseudo parabolic inequalities of type (1,1)
where the operator A is a nonlinear and pseudo-
monotone operator.

PROBLEM STATEMENTS

Let Q=R* be a bounded domain in a half-space x, = 0
with sufficient smooth boundary T' = T', LT, where T its
part in hyperspace is x, = 0. We select V = L), te[0,T].
We consider following inequalities whit initial and

boundary conditions:
(Au, v-u)=(f, v-u) xeld (2)

o = Wyix) 3

U, =0 &)

where, 5 _ Li + v and operators L. and M are defined as:

n—

1 9 du d du
=%_—_—h —_— - b
L Iy
LN

M(u): 7i:1 g(a] (X,Vu))

We assume that functions by(x) = by(x) (1. j = 1,
2,....n-1), b, ), a (x, £) are continuous for
any xe g, vier® and following conditions (i-iii) hold:

(1) |bm(x)5x;,

l<o<?2,

The quadratic from:

L(x2)- 3b, (x)88 +b,, (x)2

=)

is positively defined, for all xe{2 and its rank is equal to
(n-1) for all xel;:

(i1) ial(x,ﬁ)nlé{ibu(x)énj+bm(x)§nnn}

(ii) Yo (xL)8E, Ecl[iblj(x)&lﬁj +bm(x)§i}

izl il
We start with following definitions:

Definition 1: The function A:V - V'1s coercive 1if:

Auu
oo e
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Definition 2: The operator A:V-V' is pseudo-monotone
if u, -~ vand lim sup (Au,-u)<0 1mply (Au, u-v)< lim inf
(Au, u-v) for all ueV.

Definition 3: The operator A:D (A)cV-V' is strongly
monotone if there 13 a ¢>0 for which:

(Au-Auu-v)z c||u - v"f,

Now, we require that the operator M be pseudo-
monotone and coercive and also the linear operator T, be
monotone and bounded.

Let K, be a set of fimetions which satisfy the
following conditions.

. oo o, L du o . a
u(x),—, ,(1,_]<r1),x“ and X5

o, o, o, o | ox,

. u(x) vanishes on some neighborhood of T',

In that case, we prove following theorems:

Theorems 1: Operator 1., defined as a mapping from K,
mnto space L, (Q), is symmetric and positively defined.

Proof: Let u (x) and v(x) € K. Then:

(L)) J[Ei[ (s )%}Q [bm(x) K Hv(x)ax

£ n n

[

i ii=

L= au av du dv
+J{Ebu FoaralL G e }dx

— L~ |8
)cos VX, cosvx,; + b, cos"vx Evds

al LF

**jb

du
—vds +J.(§b aXJ Py +

2

We prove that:

_[b —vds 0

To prove the equation above, it’s enough to show
that:

du
—
lim x ax—=w(xl,x2,...,xn),
n

And the equality w(x)=w(x,%,,...x,)=0 takes place.
The existence of limit above explicitly follows from the
definition of set K.

Consider there exists an element %, for which w(x,)
Then, foe enough small x,>0 we will obtain:

¥

)
=><
=

¥

Hence, the mtegral:

N au(;(g,x“)
=
15 divergent and we obtamn a contradiction to condition
u(x)ekK,.
Therefore, we proved that (L{u), v) = (u, L{v)). As
L (%, £) is positive, then the operator L is positive. It is not
hard to prove that operator L is positively defined
(Hakobyan and Shakhbaghyan, 1995; Lotfikar and
Hakobyan, 2009).
Let’s denote by the same 1. the Friedreich extension
of operator L, which will be self-adjoint and also define a
new scalar product on linear manifold K, by the formula:
[u, v] = (L{uw),v) (3)
And we denote by H, the closure of manifold K, by
the new norm (derived from scalar product (5)). So, the
functions of H, will have first generalized derivatives by
Sobolev and will vanish on boundary T,

Theorem 2: The operator L:H; -L,({2) is bounded and
monotone.

Proof: The proof is very easy because from (5) we will
have:

(L, v) = [u, v]<|ly[H.|v[H,

And easily from theorem (1) we can show that
(Lotfilar and Hakobyan, 2009):

(Lu-Lv, u-v)=0
Theorem 3: The operator M from K is bounded.

Proof: Letue K, ve K:

(Mu,v) _[Mu udx = E_l.—a (. Vujudx

T o

—EJ. x,Vu) —dx E_[ (%, Vu juds

il g

We can show (similarly as in theorem (1) that:

—En:_lla1 (X,Vu)uds =0

=
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hence:

1

av
M Vi dx
{Mu,u) _[a (x, u)ax

=l g 1

From the condition (ii) it follows that:

(Mu,u)icgi bij(x); ;Z by (x)

=c(Lu,v):

ou dv
ox, dx

e[uv]<u]H[H.
Therefore |Mu|H<c|u|H,|v|H..

Theorem 4: The operator M from K_ is strongly
monotorne.

Proof: Suppose u, v € K. Then:

(Mu Mv,u— v E_[

i=l gl i

—EJ-( X Vu

=g |

From the equation:

dt

e dal(x,n+t(§—n))
77!-':1 dg;

a,(x,ﬁ)fa,(x,n):_l.ial(x,n+t(§—n))dt

(éj - le)dt

Tt follows that:

(Mu —Mv,u-— v) = i_l.j.a)j (X,VV +t (Vu - VV)) a(g}; v) —a(:xi v) dedt

1 7o 5

J.;J.iﬂ, (X Vv +t(Vu - vv)) v —v) i’(u—v)dth

@' %, %,
>C1_[ Eblj( (u V)a(l‘;;v) +bm(x)a(;;v) a(;;") d

] 1 n n

=afu-vl,
Therefore, the operator M 1s strongly monotone.

Lemma 1: If A’V -V' 13 strongly moenotone and hemi-
continues then A 1s pseudo-monotone and coercive.

WEAK AND STRONG PROBLEMS
We start this section which following definitions:
Definition 4: The family of operators {G (8):320} 1s said

to be a linear semigroup over the branch space Vif F (s):
V -V 1s a linear, continuous operator for all S>0 and:

G(0)=1,G (sH)=G () + G(t), S, t0
GOxeC (0, <), V),xeV

Definition 5: Let {G (s): 520} be a linear semigroup over
the branch space V and let:

D(B)=1xeV:3lim

G(h)x—x c V}
-0+ h

Then the operator B: D (B) -V for which:

. G(h)xfx
h—0*

1s said to be a generator of the semigroup G ().
We consider operators represent able in the form:

A=Ld+M (6)
where, d = 3/t and the operators 1. and M satisfy in the
conditions of upper section.
Also, we can show that following conditions hold:

¢ The operator (-d) is a generator for linear semigroup
G (s) over the space V = L’ (), with a definition
domain D (d).

Defining the operator d;; 'V -V by the formula:

From definition we get:

Gis)—1
do=tim(-a.0)=tm "Ly oenfy) D

+ DA)=D)
s Forany ¢ € K.V we have:

(Ldyg. 9)=0 (8)
+ Forany @,y e K,
(Ld, (@-W). @-W)<(Ldyp-Ld,, ¢-1) )

Remark: The operators satisfying (8) and (9) are
monotone.
Besides, the requirement:

limd,¢=d¢ , ¢=D(d).
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And continuity of the operator L imply that:

Eil’ml(th(P,W):(Ld(PsW)(PE D(d) , weV

Thus under (8) and (9) letting h ~ 0 yields:
(Ld((p*w),(pflu)i(Ld(p*de,(pflu), ek, MD(d), (10)
(dep,cp)zo, = KLﬂD(d) (11)

Here, from (6), we state a variational problem similar
to (1)

vEK,

(12)

{(Ldu,vu)Jr(Muv u) (fv u)
ue K, D{d)

From classical theory we know this problem have a
solution.
Suppose the all of the conditions are fulfilled and u
is a solution of the problem (12), then the conditions (10)
and (11) imply that for all v e K, n D (d)
(Ldu,v u Mu V- u ( u )
(Lduv u) (Muv u)z(Lduv u) (13)
(Mu v— u) (f v— u)

From (13) it is evident that a solution of (12) is also a
solution of a problem:
{Ldv,v—u)+ (Mu,v—u)z(f,v—u), veK ND({d) (14)
ue K,

The vanational problem (12) and (14) we call
correspondingly strong and weak, and accordingly we
have strong and weak solutions.

Theorem 5: Letthe all of the conditions are hold then for
any fe V'
in K; and this solution will be unique solution for strong
problem (Petrosyan and Hakobyan, 2008; Petrosyan,
2008).

= LX) the weak problem has a unique sclution

CONCLUSION

In this research we studied mitial-boundary value
problem for degenerate nonlinear pseudo-parabolic
mequality as  (Au, v-u)2(f, v-u). We assumed that
A = Ld + M where d = 3/t and the operators L and M
satisfy in some conditions, so we changed our system
with pseudo parabolic variational inequality. Finally, we
know (Petrosyan and Hakobyan, 2008; Petrosyan, 2008)
our system have a unique solution.
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