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Abstract: The evaporation of quantum black holes would leave very distinctive imprints on the detectors and
spectrum of such black heles could be obtamed. To study the quantum gravity effects on the black hole
spectrum, one can take into account the generalized uncertainty principle. Tn this paper, employing the
Bekenstein-Mukhanov approach, the spectrum of a quantum black hole is obtained. Tt is shown that the energy
spacing between consecutive levels for MI>>h is corresponding to a fundamental frequency.
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INTRODUCTION

In canomical quantum gravity, the character of
Hawlking radiation is modified when quantum gravity
effects are properly taking into account, even for
non-rotating, neutral, and very massive black hole with
respect to the Planck scale. To study the quantum gravity
effects on a quantum black hole, Adler et al. (2001) used
the generalized uncertainty principle. They showed that
in the presence of generalized uncertainty principle, the
radiation temperature of black hole i1s medified. Other
approaches of Adler-Chen-Santiago proposal are
obtained m Nouicer (2007), Myung et al  (2007),
Farmany et al. (2008), Dehgham and Farmany (2009) and
Farmany and Dehghani (2010). In this letter, we
concentrate on the quantum gravity effects of a quantum
black hole. First, we begin with a fundamental frequency
from energy spacing between consecutive levels. Then
we consider the relation between generalized uncertainty
principle and energy-time uncertainty. Then, we calculate
spectral lines and line-width of quantum black hole.

A fundamental frequency from energy spacing between
consecutive levels: In canonical quantum gravity the area
of a non-rotating neutral black hole 13 quantized as
(withG=c=1):

A =anh 1)

where, n is the energy level. Thermal character of black
hole radiation is entirely due to degeneracy of levels and
same degeneracy becomes manifest as black hole entropy
(Bekenstein, 2002; Tang et al, 2010, Majhi, 2010;

Banerjee ef al, 2010, Jadhav and Burko, 2009
Drasco, 2009, Van Den Broeck and Sengupta, 2007,
Dappiaggi and Raschi, 2006, Dreyer et al, 2004;
Setare, 2004a, b; Bekenstein and Mulchanov, 1995) Setting
(n) as the multiplicity of degeneracy, Bekenstein and
Mulkhanov (1995) found that intheleveln=1,g (1)=1, in
this level (n = 1) the black hole entropy 1s zero. Here a
general form of multiplicity degenerate (energy level) is g
(n) = "™ where, alnk and k = 2, 3, 4,... the energy
spacing between consecutive levels for M>>h
corresponds to a fundamental frequency (Bekenstein and
Mukhanov, 1995):

wo 2 (2)
SnhM

A quantum black hole can decays during interval of
observer time Al by a sequence of integers in,, n,, ..., n}
of length j. During Al the black hole first jumped down to
n, elementary levels in one ago, then n, level, etc. In this
process, black hole emits a quantum of some species of
energy 1A% _ then a quantum of energy , etc. Each one of
j quanta carries the energy 1A% . In average, during Al,
the mass of black hole decreases (Bekenstein and
Mukhanov, 1995) by:

d<M > /dt = —2HWAL/ T (3)

Since the main value of j is At/lt where, T is a survival
timescale, both could be determined. This decreasing of
black hole mass is radically different from one obtained in
the standard discussion of hawking radiance. Bekenstein
and Mukhanov (1993) obtained the mean time y between
quantum leaps as:
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T=3840y <M>In?2 )

Bekenstein and Mukhanov argues that “this
(spectroscopy of quantum black hole) to be possible to
test quantum gravity with black hole well above Planck
scale”.

Relationship between generalized uncertainty principle
and energy-time uncertainty: Generalized uncertainty
principle has been the subject of interesting works over
the vears. In these works, modification of wusual
uncertainty relation at microphysics is obtained
(Amelino-Camela ef al., 2006; Adler and Santiago, 1999,
Adler et al., 2001; Farmany and Dehgham, 2010, Farmany,
2010, Farmany et aol., 2008; Farmany et al, 2007,
Hossenfelder ef al., 2003):

sziﬂ.‘ﬁ_p (5
Ap h

where, Jf 1s the Planck length. Using relation (5) it 1s easy
to obtain a similar relation between time-energy. Dividing
both side of relation (5) by ¢ (speed of light) reads
(Farmany et af., 2007):

ax d A + I'Q (6)
¢ Apc ke
Relation (6) reads:
oy AR (7)
AE A

where, JE 1s the Planck time. We use the natural urnits
l.c.5=1_however, we restore occasionally t', in important
formulae (7) for the sake of clarity. Using this
approximation, the uncertainty m tiume-energy reads
(Farmany et al., 2007):

12L+t'AE &)
AE

Frequency of spectra: Observation of spectrum of any
quantum black hole would immediately make quantum
gravity effects well above the Planck scale. Relation (8) 1s
quadratic in AE:

t AE-TAE+] = 0 )

This leads to an uncertainty i the energy as
follow:

AP L (10)
BB, =550 f1-—)

The eigen-functions and eigen-values of energy
operator play an important role in our calculations. The
physical measurements often involve determination of
energy (or radiation frequency) emitted or absorbed by
system that makes a transition from one energy eigen-
state to another. Here we calculate the modified energy
levels by solution of the time-dependent Schrodinger
equation. The time-dependent Schrodinger equation is:

.
Hy =it (11)
=i v

In a special case when H doesn’t depend explicitly on
time, general solution of Eq. 11 is:

yir,t) = au, (e (12)

where, 1, is the eigen-function of H with energy E,,

Hu, (r) = E,u, (1) (13)

Note that a, doesn’t depend on time. The equation of
motion for the Schrédinger-wave function reads:

i0, | ws=WE) |y (14)

Or,

>

5 R ST (15)
En\w>—(2M+V(X))Iw>

In harmonic oscillator, the potential energy is
MQ*R* /2 we can write:

B2 2512
Pt MR (16)

From Eq. 53 we can obtain a relation between
momentum and coordinate as (Hossenfelder et al., 2003;
Kempf et al., 1995; Dadic et al., 2003):

PZ
&= inl+—5)0, a7
m

P

Combining Eq. 16 and 17 we obtam the modified
energy levels B, of system based on the generalized
uncertainty principle. To obtain the eigen-value and
eigen-functions of the energy we solve the modified
Schrodinger equation:
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Mm @+p i yapy s (1)

. p2
B lus=(E -
MITES oM

The solution of Eq 18 is obtained in
(Hossenfelder et al., 2003; Kempt et al,, 1995, Dadic et al,,
2003) in:

:—[a s (9

\ L T oo o MW
2
Equation 19 shows the energy levels of quantum
black hole. Using w, = w (E,) and comparing Eq. 2 with 19
we can write:

In2

ihe e —)(1 Fazx)ax] (20)

Equation 20 is the frequency of the spectral lines for
the n-th level energy of the quantum black hole. Let we
calculate the line-with of the quantum black hole. The
total uncertainty in the frequency (half-intensity line
width or just half-width) is due to lifetime effects. AW, 13
the sum of upper and lower state of energy:

AW, = _AE; +AE, (21)
2m

Note that we used the natural unite #=1_ soh = 2.
To calculate the line-width of the quantum black hole
spectral line, one can take into account W=1/% | so,
dw=—dn/A

CONCLUSION

The character of Hawking radiation is modified when
quantum gravity effects are properly taking into account,
even for very massive black hole. In this viewpont,
decreasing of black hole mass is radically different from
one entertained in the standard discussion. Thermal
character of radiation 1s entirely due to degeneracy of
levels. Same degeneracy becomes manifest as black hole
entropy. Bekenstein and Mukhanov calculated that, in the
level n = 1, the black hole entropy 1s zero. The energy
spacing between consecutive levels fo MI>>h 1s
corresponding to a fundamental frequency.
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