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Abstract: The aim of this study was to introduce a certain class of analytic functions containing multiplier

transformation in the open unit disk U. We also investigate some properties of this class.
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INTRODUCTION

For0<a<l we define a regular and analytic function

in as follows:

plzy=*q(z) =L+ abz'"™ +a b,z =1+ ianb“z“er Lzewy (1)

n=1

which satisfies the condition PO)=LR{P(Z)}>0 then this
function is caratheodory functions where « takes its
values from the relation:

=E, (meN {0} and me N
n

The class of this function is denoted by P,. For the
Hadamard product or convolution of two power series
p(z) defined in Eq. 1 and a function g(z) where:

qz)=1+b 2" +b, 2" =1+ Y b 2™

n=l
is:

P(z)="q(z)=1+ab,z*" +a,b,2"*" + .. =1+ ia“bnz“”‘ {zeU)

A function peP, 1s said to be in the class C,(u) if and
only if:

A function peP,, is said to be in the class C,(p) if and
only 1if:

ER{ zp @ )}>u (zcU)
P'@
Define an operator as follows:

c+1
J z))=
@@=
i c+1
“ln+a+c+l

c+l n+o |5
[1+2{n+o¢+c+l} Jp(z)

Clearly, Hg. 2 yields:

}a 2)

pePf, =7, ,€B,

Thus, by applying the operator I, successively, we
can obtain:

% p(z){lw”iip(Z)L (ke N)
e, kem
S e
- a.z"" o

SLn+o+c—+l

Definition 1: The fractional integral of order ¢ is defined,
for a function f(z) by (Srivastava and Owa, 1989):

{ZP(( )) }>u (zeU) I*f(z) _7J‘f(c)(z 0y ldC_u a0,
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where, the function f(z) is analytic in simply connected
region of the complex z-plane ( C) containing the origin
and the multiplicity of (z—C)is removed by requiring to
be real when (- 0)>0

Note that (Srivastava and Owa, 1989; Miller and
Ross, 1993):

g DT

T +o +1) - 1>

And some of 1its current properties can be found by
Ibrahim and Darus (2008a, b).

Let us define a class 53 of analytic functions f (z) of
the form:

fz)=30,2°, (ze U) 3

Then in view of Defmition 1, we have:

F(z)=1+ Pf(z)=1+ Ya,2™* (ze U) “)
where:
F(z)eZa, = ST0+D
T'in+co+1)

and 0 < oc<]. That is for f(2)€3 implies: F(z)ePw, (zcU).
Note that the authors defined and studied different

classes (Darus and Ibralnm, 2008; Ibrahim and Darus,

2008c). Thus by applying operator Eq. 2 and 4 yields:

2", (2 U) (3

51+ 2[ c+l

o 1’1+0€+C+1

In the present study, we define and study the
subclass N, (m; k ;u; v) of P, consisting of p(z) functions
which satisfies the inequality:

IL.F)

G o Fi@)

1>V

T..F(z)

LFO) ©

for some O<p<o<lv>0 and me Nke N,
RESULTS

In this section, we obtain a necessary and sufficient

condition and  extreme functions

p(Z)EN (m; ke ppv).

pomts  for

Theorem 1: Let F(z)eP, defined in Eq. 4 and satisfies the

inequality:
Dn +1
EW (m: k; mv )7‘ AAChSY <2(1-w) (N
o Tin+o+l)
where:
v lm; kg g vi= (1+M){;1T—[ ot i
n+a+c+1 n+a+e+l

c+1
H Al 1+ i
n+a+c+l n+a+c+l
c+1 c+l -

vl [ ]
n+a+c+l n+a+c+l

+ 2

Then F(z)eN, (m; k; p; v) where: O<p<e<l, v>0and
me N ke N,

Proof: Suppose that Eq. 7 is true for 0<p<a<lve0 and
me NkeN, Using the fact that: R{wjop if and only
ift

|17p+w‘>‘1+pfw|

It suffices to show that:

| -1 F@) +77,Fiz)—ve®

k Fz)-I" F(z)||
—\ (L+)I* F(z)—T° F(z) + ve*|T* F(z)+T", F(z)H (&)

=0

Substituting for 1* F(z),7* Fiz) in Eq. 8 yields:

| (L= )J; F(z) + 7 F(z) —ve |t

F@)-TF )|

—| @t F) T Fz) +ve®

k F@)+m, F(Z)H

2w+ S-Sy

) n+ot+c+l

etl . )onl(n+l) ..

n+a+c+l Jl“(n+oc+1)

et c+l o e+l ., | nl{n+1) o
= n+o+e+l n+e+c+l Jl“(n+o¢+1)

u+2 (Q+pl————F

n+ot+c+l

ctl | dlm+l) ..

n+oc+c+1 Jl‘(n+oc+1)

+ve‘9 [ c+l ]k
o= m+o+c+l

ct+l w M(n+1) ZHE

n+o+ctl JF(n+0c+1)
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c+l
n+o+c+l

e+l L )lmIn+1) i

n+a+c+l Jl“(n+oc+1)'

I+

2(2—u)—i[(l—u)[
w YL
N e+l T . el Ty
;[(l “)|:II+CI+C+1] [n+0c+c+1] J F(n+0c+1)||

iﬁ c+l }k_[ c+l ]m]HM(nH)IZm

n+0c+c+1 n+a+c+l ‘F(n+0c+1)

ctl A1) |
I I 2]

-

ig

—V|ée
o | n+o+e+l n+a+c+l |1“(n+oc+1)
@SS pop o
- pry n+o+c+l n+o+c+l
c+l c+l - c+l
+ (1= 4l P+ ey ———F
n+o+c+l n+o+ctl n+o+c+l
O c+l ]m| ‘MF(H+1)>O
n+o+ctl IMn+o+D)~
Hence the proof.

In virtue of Thecrem 1, we now mitroduce the
subclass N, (m; k; p; v) which consist of functions F(z)
€P, whose coefficients satisfy the mequality Eq. 7. By the
coefficient mequality for the class N (m; k; p; v) we see
that:

Theorem 2: Let F(z) €P, defined in (4) and satisfies the
inequality (7) then: N, (m; k; p; v,) « N, (m; ke p; v,) for

SOME v v, ,0<v,<v,.

Proof: For O<v, < v, we receive:
|4, T +1)
In+o+1)

o I 1
<3, kg m—'l?ﬂ('nfz )

S (kg v, )
©)

Therefore, if F (z)e N, (m; k; u; v,) the nF (z) € N, (im;
k; u; v,).Hence we get the required result.

Next we determine the extremal points. The
determination of the extreme points of a family $§ of
univalent functions enables us to solve many extremal
problems for &

Theorem 3: Let F(z) €P, defined in Eq. 4 and satisfies the
mequality (BEq. 7) and

L 2-pntatlle, . 10
E.(z) 1+%(m’k=n=u’v)r(n+l) (e =D (10)

Then F(z)eNw (m; k; p ;v) where O<p<ig<1, v20 and
meN, kel if and only if it can be expressed mn the form:

1471

F@)=B+3BE@)
where:

B> =1 ZM%B

Proof: Suppose that:

= 20-wltn+ o+ e,
g‘ﬁn ¥ (mkn; e v)l(n +1)

z", B, > 0)

Then:

=1+ ¥ (mknpv)p, A-prinrorle,
= ¥ (muksn; v + 1|

F(n+oc+1)
—gz( ey P
_ - n+a+l)
=AWy B
=21-pd-F)

<2(1-p

Thus from the definition of the class N, (m; k; u; v)
we find F (z) e N, (im; k; w; v).

Conversely, suppose that F (z) € N(m; k;, p; v).
Since:

21-n+a+1)
v (m ko viln+1)

[NES

and since P, are arbitrary then we can set:

b= _y m kv

hm e, e ED

- [n+o+l)
2"“ [(n+1) P

Then:

F(z)=f, +EBnFn ()

n=l

This completes the proof of theorem.
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Corollary 1: The extreme points of are the functions
given by:

n+oa+1) 2(1-p)s,
Mn+1) oy (m ko v)

E(z)=1+ 2%, (£, =D

where, U, (m; k; n; u; v) is defined in Theorem 1 and 1, 2,
3, .., 0<p=ael, va0.

Now we prove that the condition in Theorem 1 1s also
necessary for FeTa where:

¢l n+o+1) o

. ¢, 202eU (11)
I'n+1)

Fz)=1-3 "

Theorem 4: A necessary and sufficient condition for F of
the form Eq. 11 to be in T, (m; k; p; v) =T,nN, (m; k; p;
v), Ogu<a<] v201s that

5 e ¢l +1) (12)
E‘Pa(mkn,u,v)z(l_u)r(n+a+l)51

where, ¥, (m; k; n; 1, v) 18 defined in Theorem 1.

Proof: In view of Theorem 1, we need only to prove the
necessity. If F £ Tn, (m; k; p; v) and z 1s real then:

Iz Fz) —pdi F )|

Iz () —pdi Fz)|
>V
EFE |

. EF@m |7

or

I F(z) -t F(2)|2

I F(z) -l F ()| (13)

Substituting fOI‘J‘C“DLF(z),Jz‘:‘aF(Z) in Eq. 13 and using z-

yields:

c+1
-wl———=T
n+otc+l

2(1,“),“2{
c+1

—[7]'"‘4(1—11)[

n+ot+c+l

+[67+1]’“J+2v[
n+o+c+l

1 ¢n+1) 0
JF(n+1+0c)7

c+1
n+ot+c+l

]k

f

c+1
n+a+c+l

c+1

I 1

-
n+o+c+l

A computation, we obtain the desired inequality.

Theorem 5: The extreme points of TN, (im; k; y; v) are the
functions given by:

Fn(z)=1_wznﬂ= zel)
W mkin; i v)

where, Ur,(m; k; n; p; v) is defined in Theorem 1 and 1, 2,
3, .., Ogp<acl, v20.

CONCLUSION

The class we studied here is the generalization of
well-known classes given by Srivastava and Owa (1989).
This generalized class ca n be further used to solve
many other problems such as the partial differential in
complex domain, diffusion equations and Cauchy
problems.
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