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Reconstruction in Fluid-structure Interaction Problem

YMas Irfan P. Hidayat and 'Bambang Ariwahjoedi
'Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan, Malaysia
*Faculty of Industrial Technology, Institute Teknologi Sepuluh Nopember,
Kampus ITS Keputih Sukolilo, 61111, East Java, Indonesia

Abstract: This study presents numerical simulation of velocity-field reconstruction in Fluid-structure
Interaction (FSI) problem with the presence of a very step velocity jump at the fluid-solid interface. Models of
Newral Network (NN) with sigmoid and radial basis functions were developed and utilized as approaches of
investigation to fully reconstruct the velocity-field at the fluid-structure interface of the problem. As a numerical
case, one-dimensional compressible fluid coupled with elastic solid under strong impact was simulated. This
class of problem belongs to an Eulerian-Lagrangian Riemann problem mn which the very step jump of velocity
vector does exist. The resolution of the NN models in the vicimty of the interface was further investigated and
analyzed in which the accuracy of the NN approach was validated to the problem analytical solution. From the
results of the numerical study, high numerical accuracy of the NN models can be obtained in relation with the
mcrease of the interface resolution through which useful insights of this study were also revealed.
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INTRODUCTION

Full characterization of velocity-field in the problems
of computational dynamics and Fluid-structure Interaction
(FSI) 1s of paramount importance to visualize the flow
dynamics and to achieve the flow-field spatial and
time-dependent solution with high accuracy.

Among several applications (Pruvost et al., 2000,
Pruvest ef al, 2001, Venturi and Karniadakis, 2004,
Pastur ef al., 2008) velocity-field reconstruction in FSI
problem with the presence of velocity vector jump at the
fluid-structure interface is of high interest. The condition
may be represented in many engineering mterests such as
the case of a shock in the flud impacting a nearby solid
structure or a solid projectile impacting a fluid
(Deshpande et al., 2006, Rajendran and Narasimhan,
2006). The study of the problem 1s therefore of importance
also from the numerical pomnt of view. It 13 well-known that
the solving of FSI problem is highly centered on the
appropriate numerical treatment at the fluid-structure
mterface m order to successfully obtain a good accuracy
in the overall solution. Thus, its numerical simulation and
investigation can provide useful insights for the
implementation and strategy extension of numerical

scheme applied to the FSI problem and other problems of
FSI in general.

In the present paper, numerical study of the
velocity-field reconstruction with the presence of a very
step jump of velocity vector at the interface of fluid and
solid 1s presented. The main motivation and objective of
the study is that investigating the solution nature of FSI
problem at the fluid-structure interface with an efficient
implementation of numerical approach, but insightful.

As a numerical case, one-dimensional compressible
fluid coupled with elastic solid under strong impact was
simulated. This of problem belongs to an
Eulerian-Lagrangian Riemamn problem in which a very

class

step jump of velocity vector does exist. The problem 1s
also well characterized in the sense that its analytical
solution is available under certain assumptions of
condition (Liu et al., 2008), with which the performances
and msights of a numerical approach studied can be
assessed.

Models of Neural Network (NN) with sigmoid and
radial basis functions were developed and utilized as
approaches of mvestigation to fully reconstruct the
velocity-field at the fluid-structure interface of the
problem. Subsequently, the resolution of the NN models
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in the vicinity of the interface was further investigated
and analyzed in which the accuracy of the NN approach
was validated to the analytical solution of the problem.
Moreover, the accuracy of the NN models was compared.
This study worl is related to the work of Liuetal ( 2008),
particularly for the analytical solution of the problem
considered in this paper.

The eulerian-lagrangian  riemann problem: The
Eulerian-Lagrangian Riemann  problem  for the
one-dimensional fluid-elastic solid coupling with solid
under strong impact is described in this section. Not also
that only brief description of the problem formulation was
presented in this paper. For great details of its analytical
treatment and derivation, the readers are directed to
(Liu et al., 2008).

The fluid 15 assumed to locate on the left side of the
interface, while the solid is on the right side of the
interface. The following Hulerian-T.agrangian system in the
vicimty of the interface 1s considered:

v E Owith U] =Uforx<x,
a X - (1)
I oF o
—+—=0withV|_, =V,forx <x,

a 8)( t=0

where, %, is the interfacial location in the Eulerian system,
while its corresponding coordinate in the Lagrangian
system is denoted by x,. U and V, are the constant
velocity vectors of the fluid and solid, respectively,
representing the mitial conditions of the problem. Initially,
X, and x'; coincide each other. However, once the
diaphragm separating the fluid and solid is removed, the
mterface moves with a new velocity, u’. Thus, relation
between x; and x'; can be written as x';= x, + U t, with
respect to the fixed Bulerian system. Furthermore, o', is a
constant for the Riemann problem considered.

As a result of the strong impact, shock waves are
generated in  the system (Liu et «l, 2008,
Inaba and Shepherd, 2008). In addition, pressure and
velocity jumps also exist and the density may as well
(Housman et al., 2009a, b).

NN AND SIMULATION METHOD

The two models of NN employed in this study belong
to Multilayer Perceptron (MLP) and Radial Basis
Functions Neural Network (RBFNN), respectively. The
schematics and features of the NN are described in this
section.

Multilayer perceptron: Figure 1 shows a schematic
diagram of the typical MLP with three layers and single
output.

The notations in Fig. 1 are: p input sets, L. number of
elements 1n input vector, s number of hidden nodes, n the
summed up of weighted inputs, a the output of activation
function in the corresponding layer, w; and b,'input
weight and bias i=1to L, j=1tos), w’, , and b, layer
weight and output bias, and y the MLP output. The layer
of hidden nodes and the second layer of output are
denoted by superscripts 1 and 2, respectively.

As depicted in Fig. 1, the output estimate f realized
by the MLP given the training examples can be written as:

f‘(pw) = Zs:vvll_1 T(W‘u p+ b;) +b, (2)

=1

where: T(.) is a sigmoid function used in the nodes of
hidden layer. A typical logistic function was used m this
study:

T(n) = 1/(1+e™) (3)

For this numerical study purpose, typical objective
function was used as shown i (4):

2

?(W):i[tq —%(pq;w)] (4

where, p, 1s the vector of input sets, t, is the target output
and F(p q;W) is the MLP networl output and Q is number
of observation data in training set. In addition, the
Levenberg-Marquardt Back-propagation (BP) algorithm
was chosen as the training algorithm with an intention
that the network would give proper response or generalize
well to new examples never inputted before. The algorithm
steps of Levenberg-Marquardt for adjusting the weights
over the traimng examples are described in detail by
Hagan et al. (1996).

In put Hidden layer

Out put layer

Fig. 1: Schematic diagram of MLP

1588



J. Applied Sci., 11 (9): 1587-1593, 2011

Radial basis function neural network: Figure 2 describes
a schematic diagram of the RBFNN with the distance
function of Euclidean distance denoted by |x-¢;|, wlhich
will be further explamed in this section. In Fig. 2, the
mput sets are denoted by x, the target outputs are
denoted by y and the number of hidden nodes 1s
represented by s.

As depicted in Fig. 2, itis clear that in RBFNN, the
connections between the input and the hidden layers
are not weighted. The inputs, therefore, reach the hidden
layer nodes unchanged. In addition, the output estimate
f realized by the RBFNN given the training examples can
be expressed as:

YW, )]

where, x is the vector of input sets, ¢, is the ith center
node in the hidden layer and w;; is the vector of weights
from the output nodes to the center nodes, ¢, are the
radial basis functions of the center nodes, |x-¢ is the
distance between the point representing the input x and
the center of the ith mdden node as measured by some
101,

In this numerical study, the most widely used radial
basis function ¢ was emploved, namely Gaussian
function, as follows:

x- ¢

o

)exp[(% w]f] ©)

where, v and ¥ are the parameters that control the
position and width of the RBF centers, respectively.

From the previous explanation, it is clear that there are
four sets of parameters to be determined in the traiming of
the RBFNN. The parameters are governing the networlk
mapping properties, namely the number of centers in the
hidden layer, the position of RBF centers, the width of
RBFs, and the RBFNN weights.

lIx,-¢, Il

lIx,-¢,ll

Fig. 2. Schematic diagram of RBFNN

Different with the training of MLP, training of
RBFNN involves both supervised and unsupervised
learmng methods. The output layer 15 trained by a
supervised learming method, similar to that used in
the BP algorithm. The synaptic weights are updated as
usual with respect to the objective function of (4). On the
other hand, training of the lidden layer mvolves the
determination of the first three parameters mentioned. The
parameters are dependent only on the inputs and are
independent of the outputs, thus making this part of the
learming process an wnsupervised one. The readers are
directed to Haykin (1994) for several procedures of the
RBFNN parameters determination.

Simulation procedures: In general, learmng m NN i1s
achieved by adjusting the corresponding weights w in
response to a set of training data presented to the
network. The training data consists of pairs of a vector
from an input space and a desired network target.
Through a set of learning rule or learning algorithm, the
error between the actual and desired response or target is
minimized with respect to an objective function E(w)
relative to some optimization criterion or leaming
parameters.

The NN model prediction 1s then achieved by
inputting a new data set (testing data set) never presented
before to the trained network. The procedures thus allow
the full feature of data to be estimated and constructed
from the partial data available. This is where the
advantage of using NN is lying.

In this research work, the velocity-field data was
divided into two sets of training and testing data. The full
data was generated from (1) where its analytical solution
was available (Liu et al., 2008). Tn addition, 50% of the full
data was used as the training set, while the remaining set
as the testing set. The accuracy of the NN models was
then analyzed. Programming lines for this numerical study
were written in MATLAB environment.

RESULTS AND DISCUSSION

The simulation results of the velocity-field
reconstruction using the NN models for the problem are
presented below.

Also, because the problem considered in this
numerical study was one-dimensional, it is reasonable to
give attention to the vamation of the number of data
points which could represent the mumber of measurement
points and also to the spatial distribution of data points.
Tt is also important to note that the NN simulation results
for the traming phase of the NN were not shown m the
next followng sections. Thus only the results of the NN
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Interface pr=17.17

ur= 10'0' water steel

Ur=0

pl=10

Fig. 3: Schematic  diagram  of the  water-solid
Eulerian-lagrangian riemann problem together with

the mitial conditions
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>
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1 2 3 4 5 6 7 8 9 10
Position (X)

Fig. 4: Analytical  solution of the  water-solid
Eulerian-lagrangian riemann problem considered

in this study

sinulation with the testing data sets that were shown. The
results of simulation performed by the NN models were
measured by Means of Squared Error (MSE) value. Tt is
important to note that the MSE values presented was the
averaged values from many times simulation runming, with
a very small variation of the value from the many times
runming.

The analytical solution from (1) was obtained first by
assigning the materials properties of the fluid and solid
mvolved. The fluid was water and the solid was stainless
steel of AIST Type 431 with the properties of Poisson
ratio 0.283, Young’s modulus 215.116 GPa and density
7700 kg m™. The calculation was non-dimensicnalized,
where the density was non-dimensionalized with
1000kgm™, and the non-dimensional domain chosen
was X = [0, 10] (Liu et al., 2008).

Figure 3 shows the schematic of the water-solid
Eulerian-Lagrangian Riemarm problem considered. The
problem initial conditions are: 1w = 10.0, p, =1.0 and
u.=0.0, p,=7.7. Note that the solid is initially at rest, while
the fluid 1s impacting the solid.

Figure 4 plots the analytical solution of the
water-solid Hulerian-Lagrangian problem with a shock
wave in the water medium.

From Fig. 4, it can be observed clearly the
development of the velocity-field along the
non-dimensional domain. There are five distinct regions
consisting of two sharp jumps of the velocity-field. Note
also the very step of velocity vector jump at the
water-steel interface.

=
o

Solid and diamond Analytical
B Cross. NN Model Output [/

e e

Velocity (v)
oOrRr N WD oo N 0o

1 2 3 4 10

Position (x)

Fig. 5: Velocity-field prediction results using MLP model
with 5 data points at the interface
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Solid and diamond Analytical
@ Cross: NN Model Out put

0o aaa

Velocity (v)
[e}]

Fig. 6: Velocity-field prediction results using MLP model
with resolution of 10 data points at the mterface

The MLP simulation results: For the MLP model, the
mumber of hidden nodes of 5 was previously set. In
addition, the maximum number of iteration was set to 300.
Imtially, the number of data points of 10 was assigned for
each region m Fig. 3 without considering the distinct
natures of the regions, and 50% of the data points were
used in the training phase of the MLP. Figure 5 shows the
simulation results of velocity-field prediction using the
MLP model.

Tt can be seen clearly that there were large
discrepancies between the analytical solution and the
prediction of MLP model at the water-steel interface, when
using the number of data pomts in the MLP traming
phase. Meanwhile at other location of velocity vector
Jjump at X = 7.63, the number of data points used seems to
be adequate. This may indicate that the resolution at the
interface needs to be increased.

Figure 6 depicts the simmulaton results of
velocity-field prediction using the MLP model when the
resolution at the interface was increased by using 10 data
points.

It can be observed clearly that the MLP velocity-field
prediction results were getting better with the increased
resolution at the interface, while the number of data points
for other locations was kept constant.
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Table1: MSE values of velocity-field prediction results using MLP
model with respect to resolutions at the locations of velocity
vector jump

The number of data points at the

locations of velocity vector jurnp MSE values
5and 5 0.3416
10and 5 0.0640
10and 10 0.0558
20and 10 0.0208

Further, it may also be interesting to see the MLP
simulation results when the resolutions at the locations of
velocity vector jump are further increased. Not only at the
mterface the number of data points was now increased,
but also at other location of velocity vector jump,
X =763

Fig. 7 and X
velocity-field prediction using the MLP model when the
resolutions at the locations of velocity vector jump are
further increased. In Fig. 7, the resolutions are of 10 and
10 data points, respectively, while in Fig. 8 the resolutions
are of 20 and 10 data points, respectively. Note that the
resolution increase may be not too apparent at the
location of X = 7.63.

The MSE values of the velocity-field prediction
results using the MLP model were summarized in
Table 1.

show the sunulation results of

The RBFNN simulation results: For the RBFNN model,
the number of hidden nodes of 20 was chosen. In
addition, the spread value ¥ between 0.5 and 10 was
found to be adequate for the hidden node number. Thus,
the spread value was set to 3.

In addittion, the numerical strategy used for the
RBFNN was sumilar to that for the MLP, where the
resolution points at the velocity vector jump locations
were gradually increased and the effect of the resolution
mcrease to the prediction results was subsequently
observed.

Figure 9 shows the simulation results of velocity-field
prediction using the RBFNN model. The number of data
points of 5 for each region in Fig. 3 was used in the
RBFNN traiming phase.

Tt can be observed that the prediction results of the
RBFNN model were similar to those of the MLP model.
The large discrepancies between the analytical solution
and the prediction of the RBFNN were also observed at
the water-steel interface.

Further, for the resolution of 10 data points at the
water-steel mterface, the prediction results obtained was
shown mn Fig. 10.

Note again that the prediction results obtained by the
RBFNN model were similar to those obtained by the MLP
model for the same number of resolution at the interface.

12 Solid and diamond Analytical
8 Cross NN Model Out put
109
S8
2
9
>

I 2 3 4 5 6 7 879 10
Position (x)

Fig. 7: Velocity-field prediction results using MLP model
with resolutions of 10 and 10 data points,
respectively at the locations of velocity vector
Jump
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Position (x)

Fig. 8 Velocity-field prediction results using MLP model
with resolutions of 20 and 10 data points,
respectively at the locations of velocity vector

Jump
12 Solid and diamond: Analytical
104 £ Cross: NN Model out put

Velocity (V)

1T 2 3 4 85 6 7 859% 10

Position (X)

Fig. 9: Velocity-field prediction results using RBFNN
model with 5 data pomts at the interface

In Fig. 11 and 12, the sunulation results of
velocity-field prediction using the RBFNN were shown for
the increase of resolutions at the velocity vector jump
locations.

The MSE values of the RBFNN prediction results
were shown in Table 2.

1591



J. Applied Sci., 11 (9): 1587-1593, 2011

12 Solid and diamond Analytical '
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600

Velocity (V)
[e)]

Position (X)

Fig. 10: Velocity-field prediction results using MLP model
with resolution of 10 data points at the interface
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Fig. 11: Velocity-field prediction results using RBFNN
model with resolutions of 10 and 10 data points,
respectively at the locations of velocity vector

Jjump
12 | Solid and diamond Analytical
8 Cross: NN Model Out put
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89 10

Fig. 12: Velocity-field prediction results using RBFNN
model with resolutions of 20 and 10 data points,
respectively at the locations of velocity vector
jump

From the
obtained, 1t can be said that special attention must be
given to the locations where velocity vector jump takes
place. To achieve high accuracy for the velocity-field
reconstruction, the resolution at the locations of velocity

Further discussions: simulation results

vector jump needs to be increased.
Furthermore, at the location with a very step of
velocity jump, the resolution needs to be high. For the

Table 2: MSE walues of velocityfield prediction results using RBFNN
model with respect to resolutions at the locations of velocity
vector jump

The number of data points at the

locations of velocity vector jumnp MSE values
S5and 5 0.3369
10and 5 0.0627
10and 10 0.0540
Oand 10 0.0200

Table 3: Comparison of the MSE values of the MLP and RBFNN
prediction results

MBSE values
The number of data points at the
locations of velocity vector jump MILP RBFNN
Sand 5 0.3416 0.3369
10and 5 0.0640 0.0627
10and 10 0.0558 0.0540
20and 10 0.0208 0.0200

problem considered in this study, it was the fluid-solid
interface, as can be examined from the corresponding
MSE values of the NN prediction results as shown in
Table 1 and 2.

This also may indicate that for a numerical scheme
employed for an FSI problem, the resolution at the fluid-
solid interface should be high and fine. In fact, for grid or
mesh based numerical methods, such as FEM and particle
methods, the mesh or grid employed around the interface
15 denser or finer than that at other locations m the
solution domain to achieve the solution with high
accuracy.

Also, of the wvelocity-field
reconstruction, the spatial distribution of the data points
1s also of importance, besides the number of data points.
The spatial distribution of data points describes how the
data points distribute along the solution domain and it
should represent the regions of interests in the solution
domain.

Moreover, the models of NN with sigmoid and radial
basis functions employed in this numerical study resulted
in comparable MSE values. It 13 mteresting to note,
however, that the RBFNN model always give better
accuracy for the same number of resolutions used,
although more model parameters must be determined for
the RBFNN model. This was shown in Table 3.

The better accuracy of the RBFNN model may be
attributed to the use of radial basis functions having
parameters that control the positions of the RBFs among
the data or sample points and also their widths of
influence (spread) to the sample points, namely the
parameters of v and P. The parameters further help the
RBFNN model resolution capability, thus in turn leads to
better solution accuracy.

Further msight of this 1s that numerical schemes
utilizing or incorporating radial or other basis functions
with high resolution capability may become preference of

from the results
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choice to efficiently model and simulate the FST problem
mn general and for the suitable numerical treatment of the
fluid-solid interface in particular. Tn fact, what it is clear is
that the use of high number of grid points or mesh such
as in typical FEM is not without cost, for examples effort
and time for mesh preparation, long runmng time,
especially for more complex problem situations in ligher
dimensional solution domain of 2 and 3D. To some extent,
it might also meclude convergence and compatibility
issues.

CONCLUSION

The one-dimensional fluid-elastic solid coupling
Riemann problem has been simulated and investigated in
the present paper as a numerical case for FSI problem
considered in this study. Models of NN with sigmoid and
radial basis functions have been developed and utilized as
approaches of mvestigation to fully reconstruct the
velocity-field at the fluid-structure interface of the
problem.

With the presence of a very step velocity jump at the
fluid-structure mterface of the problem, high numerical
accuracy of the NN models can be obtained in relation
with the increase of the interface resolution.

In addition, the RBFNN model always gives better
accuracy than the MILP model for the same number of data
points used at the locations of velocity vector jump.
When wsing resolutions of 20 and 10 data points, the
MSE value of the RBFNN prediction result was 0.0200,
while that of the MLP prediction result was 0.0208. The
RBFNN has also shown representative model having high
spatial and resolution capability for the problem
considered with the resolution accuracy achieved at the
fluid-structure interface.

From the prediction point of view, the capability of
the NN models was ensured by the small MSE values.
This may have high relevant and wnportant value in
particular when limited experimental measurement data are
to be utilized for full velocity-field reconstruction.

The use of other numerical scheme with basis
functions having high multi-resolution and multi-scale
capabilities may be recommended for further numerical
treatment and extension for the FSI problem. This would
be the subject of further study.
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