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Abstract: We review the non-commutative geometry in the second-class constraints. We show the

non-commutativity in the space-time coordinates based on quantum field theory and matrix theory

compactifications has correspondence to the non-commutativity in the space-time coordnates based on the

second-class constraints.
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INTRODUCTION

Even in the early days of quantum mechanics and
quantum field theory, continuous space-time and Lorentz
symmetry was considered mappropriate to describe the
small-scale structure of the universe. It was also argued
that one should introduce a fundamental length scale
limiting the precision of position measwrements. Snyder
was the first to formulate these 1deas mathematically. He
introduced non-commutative coordinates. Therefore, a
position uncertainty arises naturally. The success of the
renormalization program made people forget about these
ideas for some time. However, when the quantization of
gravity was considered thoroughly, it became clear that
the usual concepts of space-time are inadequate and the
space-time has to be quantized or non-commutative
(Connes, 1994; Witten, 1996). As a result, there 1s a deep
conceptual difference between quantum field theory and
gravity: In the former, space and time are considered as
parameters, in the latter as dynamical entities. To resolve
the problem, quantum mechanics in non-commutative
space (NCQM) was developed. If NCOM is a realistic
physics, all the low energy quantum phenomena should
be reformulated in it. In literature, NCQM have been
studied in detail (Chaichian et al., 2001; Gamboa et al.,
2001 ;, Hatzinikitas and Smyrnakis, 2002; Ho and Kao, 2002;
Nair and Polychronakos, 2001, Zhang, 2004; Farmany,
2005, 2010, Farmany et al., 2009a-¢). In this letter, we
focus on the geometry in the
second-class constraints.

non-commutative

NON-COMMUTATIVE GEOMETRY

According to Dirac's procedure for dealing with
constrained systems, Dirac brackets must replace those
constraints, which do not commute with all other (the
second-class constraints), must be solved explicitly or
their Poisson brackets, but the first and second-class
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constramnts are mixed up. Convincing ways have been
found to disentangle them in a covariant manner by
Ghosh (1994).

Let us begin with the Lagrangian of an anyon in the
background gravity:

L=(M’u*u, + ’E°S, + 2MJute" =°) @

Where:

a
a

M _ a
i 858, =My.8 8

=g;,w

and g,, 18 the space-time metric.
In the non-Abelian gauge interactions the canonical
momenta are:

a oM ..
Pu - w B (Te“ W )Ja (2)
L oMiutef +20°%, = 2L, 3
05" .

In our frameworle, from the four primary constraints
we can write:

TI,=TF 4
- ae 3)
HH 7$* WpJa = EpJa
[
V, = " ve,* I, (6)
C = IIMII - (7)

where, A = M/J Using analytical methods, from four
primary constraints we can construct further constraint
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set (Chou et al., 1993). We focus on the second-class
constraint set (V¥, ¥*) (Dirac, 1964)) The Poisson bracket
matrix of the constraint set (V*, ") 1s:

m = {V*, "} (8)

In addition, the inverse Poisson bracket 13 defned by:

1

-1 b

-1 v v
1| SlE-ADp g
M2

@)

v

g¥ g

Where:
m = {VIJ:- XV} N*szlew“l (F—AT)
- 2 n W

and T, is the torsion term and N, M and F are three
dimensional matrixes.

According to Dirac's procedure for dealing with
constrained systems, those constraints that do not
commute with all other ones the second-class constraint
must be solved explicitly or their Poisson brackets must
be replaced by Dirac brackets. Let x" and x* be the
coordinates. Using Fq. 8 we can write the generic Dirac
bracket for coordinates as:

. V”,x“}
{x”,xv} :{x”,xv}f({x”,V“}{x”,x“})m’l { . (10)
frx}

Equation 10 can be sunplified to:

frnx} = s (1)

where, 5*° i1s a matrix and st have dimension of %%
N

Equation 11 shows the generic non-commutativity in the
geometry of the space-time.

CONCLUSION

The non-commutative geometry in the second-class
constraints 1s  studied. It i1s  shown that the
non- commutativity in the space-time coordinates based
on quantum field theory and matrix theory
compactifications 18 comrespondence to the
commutativity in the space-time coordinates based on the
second-class constraints.
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