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Abstract: The identification of intrinsic characteristics on distillation column via dynamic modeling has been
becoming indispensable in order to fulfill the increasingly stringent product quality and system regulations.
Therefore, the aim of the study is to capture the complex dynamics and static interactions of input output using
FANN in Shell heavy oil fractionators. With the case study on “Shell” heavy oil fractionator, artificial
mtelligence 1s employed to model the 7 operational outputs, where 3 of those are controlled outputs, named as
top end point composition, side end point composition and bottoms reflux temperature. The training, testing
and validation data for the single layer neural network are generated through the simulation with the presence
of disturbances, process gain uncertainties, measurement of noise and step time variations. With Levenberg-
Marquardt algorithm and early stopping method oriented network traiming, parameter iteration method 1s
proposed and applied to iterate over 4 parameters where the representative pairing to generate optimum network
prediction accuracy is selected. Based on sum squared error, residual error and correlation coefficient analysis,
the network performance on the case of perfect case, high noise-mnfluencing system, Multi Input Multi Output
(MIMO) and highly uncertain system 1s greatly satisfying in terms of prediction accuracy and network
robustness. The result shows that the neural network will always customize itself in nonlinear system and
shows its ability in understanding the complex system dynamics with great learning efficiency.

Key words: Dynamic modeling, neural network, network performance, system nonlinearity, artificial mtelligence

INTRODUCTION

Distillation column or fractionator is generally known
to be widely used equipment in industries particularly on
petrochemical processing. Tts significance for efficient
separation process has mcreasingly been concemed by
engineers in looking at the tradeoff between cost effective
approach and tightened product specifications. In 11.S.
the amount of this type of equipment already reaches
approximately 40,000 columns and meanwhile consumes
around 3% of total 11.3. energy usage in the past decade
(Osman and Ramasamy, 2010). Hence, the advanced
process modeling and control strategy on distillation
column is indispensable in creating flexibility in reducing
the operating and capital cost, preserving environmental
resources, IMNimizing energy consumption and attaimng
satisfied production rate and quality. However, distillation
column is always well-known with its difficulty on
dentifymng the intrinsically complex system behavior of
composition and phase change which affected by local
temperature (Jazaveri-Rad, 2004). This is more specifically
known as vapor liquid equilibrium and when the physical

structure such as number of trays is greater, the
computational effort in  modeling will also be
proportionally substantial. This 1s due largely to the
equilibrium between the formation of vapor and liquid 1s
occur everywhere within this multistage separation
system while this process dynamics 1s not fast and
consistent enough to be captured steadily.

Apart from that intricacy of system equilibrium,
inherent factors like sluggish process response resulted
by gradual temperature and composition change will also
contribute to the aforementioned problems. As the
distillation column constitutes of 2 heat balance loop,
named as reboiler and condenser, the respective heat duty
does affect more than one variable, includes temperature,
product compositions, vapor and liquid flow rate. Thus 1s
rather known as control loop interaction m multivariable
system since the slight changing of one variable would
leave substantial effects to all other control loops
{(Fermandez De Canete et al., 2010). These control loop
interactions could substantially result in unpredictable
and elusive output patterns that would ultimately induce
to high difficulty level of dynamic modeling.
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The objective of this research is to capture the
complex dynamics and static interactions of input output
complex system with least mean squared error of residual.
Artificial neural networks will model the complex,
nonlinear or even ill conditioned functional system by
referring to the inputs and outputs processing data. This
parallel computational model able to learn from
experiences and hence no a priorn knowledge 1s required
to estimate the possible output trend that must be tailored
to the respected input (Marini et al., 2006).

Previously, several advanced methods had been
resorted on modeling of industrial distillation colummn,
for mstance, multivariable nonlinear Model Predictive
Control (MPC) on an ill-conditioned distillation column
(Waller and Boling, 2005) . In addition, Computer Algebra
(CA) program also been used to generate physical
property computer code for modeling and simulation of
steady state reactive distillation column (Alfradique and
Castier, 2005). Meanwhile, dynamic process model for
standardized distillation system gained through neural
networks based algorithm had alse been developed
according to specified cases of controller and equipment
structures. For example, neural network controller by
mverse modeling for distillation plant (Chetouam, 2010)
and modeling and control of a packed distillation
column by using artificial neural networks (Conradie and
Aldrich, 2010). Also, other modeling tools like radial basis
function networks also emerges as effective modeling
algorithm in estimating nonlinear
expressions (Kennea et al., 2006).

Besides that, distillation column with different system
was modeled by researchers using artificial neural
networks, for instance, binary system of methanol-water
separation modeling by multilayer feedforward neural
networks (Yu and Yu, 2003). There are 2 hidden layers
being applied while the modified backpropagation
algorithm 1s used for networks traiming purpose. Steady
state inverse modeling for neural networks controller
generation was conducted by Zhang et al. (2007) on
methanol-water binary system. The traiming data was
obtained from the system dynamic simulation on both
laboratory scale column and real industrial distillation
column. In view of modeling on this heavy oil fractionator
systemn using neural networks, the umiversal scientific
studies are not sufficient to provide the detailed
information on the generalized networks performance in
terms of consistent accuracy, robustness and limitations
or susceptibility (Nascimento et al., 2000).

The neuro simulation technique targets the
establishment of a power symbiosis between hard
computing and soft computing protocols (Ayala et al.,
2007). In neuro simulation, hard computing techniques are

parameters 1n

couple with soft computing techniques for the
development of powerful expert systems. Numerical
models provide a precise and formal expertise at a
significant computational expense that can be taught to a
soft computing tool, once trained, can exploit and apply
the learned expertise through much less
computational work (Silva et af., 2000).

intense

NEURAL NETWORK ARCHITECTURE AND
MODELING

Artificial intelligence works on the characteristic to
mimic human thinking behaviors and learn from previous
experiences or examples in order to make decisions or
conclusions more precisely when resolving the problems.
Meanwhile, neural networks exlubit satisfying
compromise among high speed computation, robustness,
adaptability and good filtering capability towards
excessive noise and mcomplete processing mformation
(Ahmad and Zhang, 2006). Analogous with biological
neural systems, neural networks are designated to
comprise of a number of highly interconnected nodes or
specifically named as information processing elements as
llustrated 1n Fig. 1 (Ahmad ef al., 2009). These nodes
determine the specific characteristics of architectures but
more importantly, it accomplish the model computation
through high-speed signal transmission using digital
computers. By capturing the newron architectiwe and
information processing in human bramn, neural networks
is developed with the combination of a number of closely
interconnected nodes which responsible in information
distribution and processing(Al-Alawi et al., 2008). The
neural networks can be applied in varied forms with
different in unique architecture and reason for usage. In
fact, the neuron interaction in human brain is relatively
complicated and mvisible but this microscopic processing
will later be exlubited as an identifiable or “macroscopic™
behavior. This is because the output signal generated
from the input stimulus will be transformed into some kind
of corrective actions, for instance, opening or closing of

Input Hidden Output
layer layer layer

—>

Fig. 1. General structure of neural networks
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control valve. Artificial neural networlk is a physical
cellular system, which can acquire, store and utilize
experiential knowledge (L1 and Liu, 2006).

The major procedures in conducting this modeling
research are classified as input-output data generation,
computational program creation and networl performance
optimization (Sharkey et al, 2000). For the actual
analytical case, the system simulation 1s performed using
Simulink, MATLAB which takes measurable or
immeasurable factors into accounts for the sake of
generating the adequately nonlinear yet approximate to
industrial-based operating data. Concisely, there are 5
nputs components, comprising 3 manipulated nputs
and 2 disturbance variables. For those 2 disturbances, one
of it 15 measwed disturbance while the other 1s
unmeasured disturbance.

In particular, the scaled data will be distributed
normally with the characteristic of zero mean and standard
deviation (Silva ef af, 2000). This step 15 especially
unperative for the sake of handling order of magnitude
differences among input variables where the network will
tend to introduce the weight incommensurately to the
mput. As a result, the network will not be effective again
since the magnitude of the wvariables 15 deviated
sigmficantly. Equally important, the data scaling 1s also
prerequisite by virtue of the not self-regulating
characteristic of activation function that is being applied
on hidden layer. Explicitly, the limit of hyperbolic tangent
sigmoid transfer function 1s ranged from lower constraimnt
of-1 to upper wvalue of 1. Consequently, the input
variables which are larger than value of 3, for instance, 10
and 100, will ultimately be transformed as identical value
of 1. The network will not be able to distinguish the
differences between those two values and so the network
prediction accuracy will be degraded (Baughman and
Liu, 1995).

Also, a few parameters have been noticed to be
mfluential and effective in improving the overall network
performance which are known as number of hidden
neurons, system dynamic order, random weight and also
bias forwarded to hidden and output layer. Equally
important, there is constantly 1 neuron in output layer
while for input layer, the number of neurons is varied
according to the dynamic order where first order implies
2 neurons and so forth. These 3 parameters will firstly be
iterated for each output variable and the final parameter
values will subsequently be applied for modeling to attain
the most satisfied result.

Explicitly, the mumber of ludden of neurons is the
amount of neurons i intermediate layer m performing
information processing by 2 major algorithms of
summation and activation (Adeloye and Munari, 2006;

Ahmad and Zhang, 2006). From the MATLAB command
for network traiming algorithm, the particular expressions
for weights and bias are shown as follows:

wl=pl* (rand (nn, 4) - p2); (1)
w2 =pl*(rand {Lnn) - p2); (2)
bl=pl*(rand (nn, 1} — p2); (3)

b2 = pl*(rand (L1) - p2); 4

where, pl (parameter 1) and p2 (parameter 2) are constant,

nn” represents number of hidden neurons and *
represent multiply.

CASE STUDY

This research was carried out at School of Chemical
Engmeermg, Engineering Campus, Universiti Sains
Malaysia from December 2009 till July 2010. The detailed
process descriptions and fundamental mechanistic models
of this research are virtually procured from the literature
authored by Maciejowski (2002). From Fig. 2, the product
streams are divided into 3 parts which are from top, side
and bottom of the fractionator. Next to this, there are 3
circulating loops (or reflux) located at the top, middle
(known as mtermediate reflux) and bottom of fractionator.
The heat 1s oniginated from the gaseous feed stream while
the reflux loops that act like heat exchanger will be
responsible m removing certam amount of heat from the

Top
temperature

Upper
reflux duty Top end point
composition
Upper reflux
temperature
Intermadiate reflux
duty
Intermadiate reflux N A | | AN | ... .
temperature £ Side draw
Bottoms reflux duty
° Side end point
composition
Side draw
Bottom reflux temperature

temperature

Feed

Fig. 2: Schematic diagram of “Shell” heavy oil fractionator
(Macigjowski, 2002)
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m 4.10 1
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Stepl ul Scope 1
140 D%( Uniform random
60s+1 number
Step2 u2 Transport
dealy-u2
5.93 - D%(
50s+1 =
Step3 u3 Transport
dealy-u3
[ ——
45s+1 = s
Step 4 dm Transport
dealy-dm
1.46 - D%(
40s+1 =
Step 5 du Transport
dealy-du

Fig. 3: Block diagram for combination of FOPTD system for real case simulation on generating top end point composition

(y1) with the mampulation of top draw flow rate (ul)

Table 1: Relationships between Inputs and outputs in the form of transfer function

Variables g uy us
n 405 ¢ L 177e L 588 ¢ L
505 +1 60s+1 508 +1
¥z 539 ¢ L s72ew L 590 ¢ 1
508 +1 60s+1 405 +1
¥ .66 % 165 1 593 ¢ L
9s5+1 30s+1 405 +1
¥a sepe 1 2547 L 810e™
12s+1 275 +1 20s+1
¥s a13e% L 23867 L 2386 L
8s+1 195 +1 19s+1
e 406e L 418 L 5530 L
13s+1 33s+1 9s5+1
¥ 438 L saz e L 720 1
33s+1 Ads +1 19s+1

ul, u2, u3 are controlled input, ¥1, ¥v2, ¥3, vy4,¥5, ¥6, y7 are controlled output

fractionator as a mean of heat recovery. This heat will
subsequently be used for the other processes purposes
like steam generation. Besides that, the heat removed from
circulating loop 1s corresponding to the term “heat duty”
where the small heat duty implies the small heat removed
and large amount of heat being recirculated back into the
fractionator. Nonetheless, there 1s a sigmificant difference
among those 3 circulating loops where the mntermediate
reflux loop is considered to be measured disturbance
(ready for feed forward control) while upper reflux loop is
unmeasured disturbance. The controlled loop at the
bottom reflux loop 1s thereby known to be manipulated
variable. Tn addition, the top and side product flow with
the control valves are also known to be the manipulated
variables. Thoroughly, from those 5 inputs, 3 of those are

manipulated variables while the rest 2 are disturbances.
The block diagram for combination of first order plus time
delay system for real case simulation on generating top
end point composition (y1) with the mampulation of top
draw flow rate (ul ) are shown in Fig. 3. From Fig. 3, the
additional block in Simulink™ is used to sum the previous
block together mn other to connect to the next block.

The transfer function form the control mputs
(manipulated variables) to all the outputs are shown in
Table 1. Note that all the time constants and time delays
are expressed in minutes. The transfer functions from
the two disturbance inputs to the outputs are shown in
Table 2. These tables show the nominal transfer
functions. The gain in each transfer function is uncertain,
the uncertamties associated with each wnput being
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Table 2: Transfer fimctions from disturbances to outputs

Variables d, d,
n 1.20 ¢ 144 ¢4 1
435 +1 40s+1
” 1.52 ¢ 13 1
23s+1 20s+1
¥ 116 L !
11s+1 6s+1
¥a 1.73 1 1
S5s+1 19s+1
¥ 131 L _t
2s+1 22s+1
e 110 1 L
19s+1 24s+1
¥z _r _t
275 +1 325 +1
Dm is measured disturbance, du is unmeasured disturbance
Table 3: Extent of gain uncertainty in each transfer finctions
Variables W u us d d,
¥ 4,052,118, 1.77+£0.395, 5.884+0.598, 1.20+0.128, 1.4440.168;
V2 5.30+3.205, 5.72+0.575, 6.9040.895, 1.52+0.138, 1.83+0.138,
V3 3,662,208, 1.65+0.358, 5.53+0.678, 1.160.085, 1.274+0.088;
¥ 5.92+2.348, 2.5440.243, 8 10+0.325, 1.7340.028, 1,700,048
¥s 4.13£1.718, 2,380,938, 6.23£0.308, 1.31£0.038, 1.2640.028;
Vs 4.06+2.308, 4.18+0.358, 6.53£0.728, 1.19+0.085, 11740.018;
¥7 4.38+3.118; 4.4240.735, 7.2041.3358 1.14+0.185, 1.26+0.185

| &] <1 for each j, & is process gain

correlated with each other. Table 3 specifies the
uncertainty in each gain. The nominal model is obtained
when 8] =0 for each j; but it is assumed that each &j can
vary in the range -1<8 <.

RESULTS AND DISCUSSION

The network prediction accuracy and robustness are
assessed though mathematical error analysis to wlich
sum-squared error, residual error and coefficient
correlation between the predicted and actual data is
computed. Random noise, and gain
uncertainties have been associated to the generated data
to create system complexity and similarity to real industrial
data. There are 7 operational outputs being simulated and

disturbances

studied with the manipulation of one or multiple input but
only the most imperative component of top end point
composition is taken as the subject of discussion in this
session.

Perfect case and high noise-influencing system
modeling: The perfect case is defined as the system being
simulated under the condition where disturbances and
others uncertainty 1s absent. Under this circumstance,
the output curve will be a smoothly proportional
curve with the steady state value resulted directly
from the step change and process gain. Instead, high
nowse-influencing system 1s associated by the large and
unpredicted noise measurement with the introduction of

disturbances and gain uncertamties at the same time so
that the system will be increasingly nonlinear to be
predicted. Virtually, the function of noise is to generate
nonlinear response curve mnstead behaves as real noise
since the magnitude of noise will generally not be so
significant.

Perfect case with the absence of process disturbances
and gain uncertainties: The system being considered
here is single-input single-output (SISO) system with
only top draw flow rate mampulated for output top
end point composition. The network dynamics from first
to third order 1s simulated where only the pairmng which
results in least training and testing sum squared error is
the In the absence of
disturbance, measurement noise and gain uncertamnties,
the simulated output response 1s appearing in
smooth cwrve up to a steady state value as it is named
as perfect case.

In here, the analysis on the network performance
15 conducted for the sake of mvestigating the
network ability in handling perfect response albeit it
will not exist in real case. Furthermore, the utmost
limit of the network is 1dentified so that the network
capability can be clarified in view of the comparison
for the actual network performance in the rest
cases. From Table 4, the pairing with its simulated
result for all of 3 network dynamic orders are
shown while thurd dynamics 15 ultimately

selected as final model.

order
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Table 4: Summary on neural network parameter values for top end point
composition (1) with the manipulation of top draw flow rate (ul)
in perfect case

Systern dynamic order

Component First Second Third
No. of hidden neuron 2.0 10.0 9.0
Parameter 1 0.1 0.4 0.4
Parameter 2 0.1 0.3 0.4
Residual error 11.5828 5.6787 4.6223
Correlation coefficient 0.9533 0.9902 0.9930
Validation 88E 9.8225 1.9913 1.3133

Qutput

Fig. 4 Neural network validation performance for top end
point composition (yl) with manipulation of top
draw flow rate (ul) in perfect case

08 ! ‘ ! !
06
0.4+
02
o
02
04,
-0.6,
0

Residual error

Data set

Fig. 5: Residual  between actual and predicted
validation data for top end point composition (y1)
with manipulation of top draw flow rate (ul) in

perfect case

m%amood%m“ WP Dng,%noocmd?
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4 f? I\ ?}f 2 “Validationdata 1
3 : : : = Prediction model
5 : : ‘ f : :

P e

Output

i i i i
0 20 40 60 80 100 120

Fig. 6 Neural network validation performance for top
end point composition (y1) with mampulation of
top draw flow rate (ul) and measurement noise of
0.5

chosen as the neural network model because of the
minimum training and testing sum squared error.

As illustrated from Fig. 4, the neural network
prediction model along the delay, immediate response and
steady state part closely links the actual validation data.
In addition, this third order dynamics network has
inflicted in slight oscillation at the end of the steady state
portion while the other part has been accurately predicted
by the network with the associated error near to zero.
From the mathematical error analysis, the validation
residual error and sum squared error has been greatly
reduced to unusually low values and denoted as 4.6223
and 1.3133, respectively. When the overall system error is
considered as displayed in Fig. 5, the residual error on
system transition is less than 0.6 while the error on system
lag 1s lower than 0.4 and hence the network 1s stated to be
able to capture the system transition well in view of the
insignificant deviation.

Nonlinear system with the introduction of elevated
measurement noise: The analysis 15 conducted on the
top end point composition based on the manipulation of
solely to draw flow rate but with elevated measurement
noise, which 18 0.5 and 1.0 mstead of 0.1 as being applied
previously. The network validation performance 1s shown
inFig. 6 with the validation data which in nonlinear trend
at steady state part is not accurately captured by the
network. Owmg to the mfluence of increased
measurement noise in causing high nonlinearity of the
response, the associated error inflicted from network
prediction is found to be relatively great with its
mathematical values tabulated in Table 5. The degree of
oscillation particularly at steady state portion is
appreciable while the generalized neural network model
in  first order dynamics and 11 hidden neurons still
unable to predict the changing trend and delay of the
nonlinear dynamics with the obvious deviation of around
1.0 unit. The network performance on the second step
change is slightly improved closer proximity between data
and model.

Basically, the comparison 15 also made on the case
with measurement noise of 0.1 which is tabulated in Table
5, to study the effect of dynamic nonlinearity to the ability
of network prediction. From the Table 5, the residual error
and validation sum squared error from measurement noise
of 0.1 to 0.5 has been increased at least 400% while the
correlation coefficient is only decreased from 0.9653 to
0.9424. From Fig. 7, the effect of random noise that causes
nonlinearity 1s truly significant n view of the great
increment in prediction associated error. Tn addition, the
major error contributor still falls on the system transition
error which accounts for approximately 3.0 wihule the
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Table 5: Summary on neural network parameter values for top end point
composition (y1) with the manipulation of top draw flow rate (ul)
in elevated measurement noise

Measurement noise

Component 0.1 0.5 1.0
No. of hidden neuron 5.0 11 9.0
Parameter 1 0.4 0.5 0.2
Parameter 2 0.2 0.4 0.3
Dynarnic order Second First Second
Residual error 8.7129 34.4599 36.3546
Correlation coefficient 0.9653 0.9124 0.9214
Validation SSE 5.2260 23.4533 26.7449
8 T T ! ! T
7 """'"""oéa;ocaj:%@c‘;z:f%a;,"cp """ [ """"""" """""" b

Output

ol i i (X i |
0 20 40 60 80 100 120
Data set

Fig. 7: Neural networl validation performance for top
end point composition (yl) with manipulation
of top draw flow rate (ul ) and measurement noise
of 1.0
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I - T K

|
0 6 7

Predicted outout

Fig. 8: Proportionality between actual and predicted
validation data for top end point composition (y1)
with mampulation of top draw flow rate (ul) and
measurement noise of 1.0

accumulation of slight error on other portion ends up with
the final sum squared error of 24.4533.

From Table 5, the system that associated with
measurement noise of 1.0, the prediction error is noticed
to be expectedly greater where the validation sum squared
error and total residual error are computed as 26.7449 and
36.3546, respectively. Hence, 1t can be stated that the
network prediction performance in this case is the worst
among all of other cases. But, according to the error
merement from measurement noise of 0.5 to 1.0, 1t 1s also
perceived that the increased error 1s not as sigmficant as
from measurement noise of 0.1 to 0.5.

In here, a conclusion could be made where the neural
network would tend to customize in highly nonlinear

system where the prediction error would not exponentially
increase with the magnitude of random noise. With
increasingly high random noise, the network prediction
error will be gradually increased instead of rapidly
changed since the neural network start to depict its ability
in handling complex and nonlinear system dynamics.
When the linearity between validation and predicted data
1s analyzed as shown in Fig. 8, the generated correlation
coefficient is decreased to 0.9214 where the data point 1s
deviated within acceptable distance from the generalized
straight line.

MULTIPLE-INPUT SINGLE-OUTPUT (MISO)
DYNAMIC MODELING

For previous analysis, the network output simulation
is performed with only 1 manipulated variable being
altered in step change basis. In order to further assess the
network performance, there are 3 manipulated variables
introduced simultaneously with it known to the network
during the traiming and testing phase mstead of beng
veiled. In addition, the network 1s examined in 2 stringent
conditions where the step tume 1s fixed and varied.

Step change simulation on constant step time amongst
manipulated variables: On this case, the step changes for
3 manipulated variables are introduced simultaneously at
the same and constant step time of 1. As for comparison
with the previous case of top end point composition, this
analysis is aimed to investigate the ability of the network
in handling multiple 1nput systems. In this juncture,
each mentioned mput 13 actually linked to different
process function with gain uncertainties, which directly
increase the sophistication of the system. In addition,
there are only 3 controllable outputs are being modeled,
namely top end pomt composition, side end point
composition and bottoms reflux temperature, by virtue
of its significance in this distillation system. The
network will be simulated from first to third dynamic
order whilst the optimum condition will be chosen to
form the networle model. From Table 6, first order dynamic
with 4 hidden newons is selected by virtue of its
capability m inducing lowest traimng and testing sum
squared error if compared with second and third order
dynamics.

As noticed from similar Table, the third order
dynamic system, which able to result in lower validation
error may not necessarily well trained, as it 1s not applied
as the model in this case. From the Fig. 9, the network
seems capable in capturing the system delay well but
the problem arisen on the steady state portion where the
deviation is obvious. The discrepancy on the second
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Table 6: Summary on neural network parameter values for top end point
composition (v1) in multiple input svstem with constant step time

Component First order Second order Third order
No. of hidden neuron 4.0 30 2.0
Parameter 1 0.3 0.2 0.3
Parameter 2 0.1 0.1 0.1
Residual Error 20.2480 27.8946 15.0118
Correlation coefficient  0.9514 0.9088 0.9517
Validation SSE 11.5029 20.6646 90918

Table 7: Summary on neural network parameter values for multiple input
systerns with constant step time

Component vl ¥2 ¥7

No. of hidden neuron 4.0 30 3.0
Parameter 1 0.3 0.3 0.3
Parameter 2 0.1 0.4 0.3
Dynamic order First Third Third
Residual error 20.2480 9.5644 14.0662
Correlation coefficient 0.9514 0.9515 0.9189
Validation SSE 11.5029 6.5825 9.3581

2 'Validation data
=~ Prediction model|

Output

Fig. 9. Neuwral network validation performance for top end
point composition (y1) in multiple input system
with constant step time

35
3.0
25
20
15
1.0
0.5

0

Output

Data set

Fig. 10: Neural network validation performance for top
end point composition (y1) in multiple input
system with varied step time

step change is somewhat significant as this degraded
accuracy would directly influence the whole process
control performance and effectiveness.

The ability of the network in capturing the MISO
systemn for side end point composition is analyzed and the
network performance 1s found to be satistfying with the
close matching between the data and model. The network
1s noticed to be able to handle multiple input systems
properly as the computational effort 1s increased with the
complexity of the system. In particular, this network is

trained in third order dynamics with 3 neurons embedded
in ludden layer while the performance 15 superior to the
previous case.

With the tabulated result in Table 7 the network
performance is noted to be satisfying with the moderate
validation sum squared error generated albeit the case for
top draw flow rate depicts slightly higher error. For these
3 cases, the parameter 1 is at constant value of 0.3 whilst
the number of hidden neurons is not found to be as high
as more than 10. Virtually, the relationship between these
parameters and network performance 1s still elusive to be
interpreted while for this moment, iteration among these
parameters would serve to be a simple yet direct approach
in procuring the optimum model.

Step change simulation on varied step time amongst
manipulated variables: After the network is proven to be
capable in handling multiple input systems with 3 input
variables being manipulated simultaneously, the analysis
is advanced with the step time for manipulated changed.
In here, the step time for ul, u2 and u3 have been varied
to 10, 50 and 100 respectively mstead of at time of 1 as
previously. Consequently, the difficulty for the network
to apprehend and predict the system dynamics will be
elevated as the effect of step change of different
manipulated variable may create confusion to the network.
As 1llustrated 1n Fig. 10, the effect of the manipulated
variables with different step time is depicted along the
immediate response curve where the stage-liked curve is
formed.

Nonetheless, the network still able to predict the
extent to which the dynamics will be disturbed by the
manipulated variables. This prominent performance is not
persisting on the steady state part where the slight
deviation still can be perceived obviously. However, the
computed result 15 fairly satisfying where the validation
sum squared error accounts for 7.9774 while the total
residual error 1s 14.1813. In addition, the linearity between
actual validation data and prediction model 1s high where
the correlation coefficient amounts to 0.975% while this
figure implies great capability of the network in handling
this MISO system.

For the second controlled output of side end
point composition (y2), the changing trend of the curve
along the immediate response is even more remarked
because the manipulation 1s performed abruptly in
appreciable magnitude of step change. In this case, the
network performance 1s good since the close fitting
between the data and the model i3 attamed with only
small deviation 1s observed. Mathematically, this second
order dynamics network with 4 hidden newrons is
associated with 5.9661 as validation sum squared error.

2121



J. Applied Sci., 11 (12): 2114-2124, 2011

Table 8: Summary on neural network parameter values for multiple-input
single-output (MIS Q) systems with varied step time

Component vl v2 V7

No. of hidden neuron 3.0 4.0 7.0
Parameter 1 0.4 0.3 0.2
Parameter 2 0.5 0.2 0.2
Dynarnic order First Second Second
Residual error 14.1813 10.4754 13.9777
Correlation coefficient 0.9759 0.9749 0.9643
Validation 8SE 7.9774 5.9661 6.8569

Output

i i i | i i
0 20 40 60 80 100 120 140
Data set

Fig. 11: Neural network validation performance for top
end point composition (y1) in highly uncertain
system
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Fig. 12: Residual between actual and predicted validation
data for multiple-input single-output system for
top end point composition (yl) i highly
uncertain system.

The second order dynamics network 1s again proven
to be useful in predicting MISO system for bottoms reflux
temperature.

In addition, the prediction for the first step change 1s
not noted to be sufficiently excellent when the model fails
to precisely fit the data points. However, the discrepancy
1s still acceptable and the model could closely capture the
second step change with unnoticeable error.

From the summeary as tabulated m Table &, the
network performance 1s fairly well m all of the 3 controlled
outputs with the validation sum squared error less than
10.0 and correlation coefficient greater than 0.96. The
chosen parameter values, for mstance number of ludden
neurons and network dynamics order, are moderate in
value mstead of exceedingly high.

Network prediction on highly uncertain system: From
previous analysis, it 1s perceived that the extent of random

noise would substantially influence the network
performance whilst the networl is capable in capturing the
dynamics for MISO system even if the manipulated
variables are introduced separately. Tn combining all of
those features to the dynamics of top end point
composition, the network ability is examined and this
analysis 18 mmportant since the actual dynamics of
composition mn real distillation column might most
probably elusive and complicated.

In this case, the random noise being mtroduced
ranges from 0 to 1.0 while the step tune 1s applied
randomly from O to 50 min. Previously, there are 8
uncertamties exist in this system which encompass 5
process gain uncertainties, 2 disturbance variables and 1
random measurement noise. But in this system, another 3
uncertainties will be added, which are the 3 unpredictable
step time for manipulated variables. Under this
circumstance, the network is assessed on its performance
in handling this mherently complex system to where it
might happen in real application of distillation operation.
As shown in Fig. 11, the validation data itself are
scattered n an unusual yet highly oscillated trend and the
prediction model fits it roughly in nonlinear manner. The
network prediction on the second step change 1s
somewhat worse than the former as the model is slightly
lower than the actual data and approximately 0.5 is
deviated.

The network performance is deemed to be acceptable
especially in handling the system with high level of
uncertainties to which the trend is intractable with
possibly large deviation from one pomt to another. The
prediction model i1s observed to be maintaming and
oscillating within the scattered points in capturing the
data trend. Tn this case, the first order dynamics network
with 4 hidden neurons is chosen as the best-trained
neural network model for tluis nonlinear system. As
summarized from Table &, the validation sum squared error
for first order dynamics network is rather the greatest than
second and third order dynamics albeit it’s training and
testing performance are outperforming to the latter.
Instead, third order dynamics network can validate better
than first order system with validation error as 19.1375 and
however, thus 13 deemed to be taken place coincidentally
since the reference on traimng and testing performance 1s
more reliable. The changing trend of model on steady
state portion, which 1s sufficiently stable, and without
unduly oscillattion has exlubited its robustness in
capturing the system dynamics.

Explicitly, the validation error is computed as 24.6629
while the total residual error is 43.6760 as elucidated in
Table 9 and Fig. 12. Figure 12 clearly imply that the
network performance is not as good as previous cases but
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Table 9: Summary on neural network parameter values for multiple-input
single-output (MISO) systems of top end point composition (v1)
in highly uncertain system

Cormponent First order Second order Third order
No. of hidden neuron 4.0 11 5.0
Parameter 1 0.5 0.1 0.2
Parameter 2 0.3 0.2 0.2
Residual error 43.6760 39.2548 37.1705
Correlation coefficient  0.9428 0.9493 0.9451
Validation 8SE 24.6629 20.5796 19.1375

Actual output

I ; i ;
15 20 25 30 35 40
Predicted outout

Fig. 13: Proportionality between actual and predicted
validation data for multiple-input single-output
system for top end point composition (y1) in
highly uncertam system

it still reliable in predicting the system dynamics since the
model virtually tends to fit into the nonlinearly scattered
data points. This is proven by the linearity analysis where
the correlation coefficient is sufficiently high and acquired
as 0.9428 as illustrated i Fig. 13. In here, this single layer
neural network with the simplest processing architecture
starts showing its incapability in highly uncertain case.
Multiple neural networks with more complicated algorithm
would be suggested to improve the network prediction
accuracy and robustness.
The overall result is quite similar in terms of
trending and also the behavior of the predicted
output as what been explamed m the research from
Meneguelo ef al. (2009), Chen et al. (2004), Ali et al.
(2008) and Georgieva et al. (2007). Tt is clearly shown that
the neural network modeling was able to capture the
dynamics of the highly nonlinear system even though it
1s 1n high uncertainty scenario.

CONCLUSION

For the network modeling on single-input single-
output (SISO) system, the network performance is
moderately satisfying since the prediction model shows
ability to capture the immediate step change response but
poses pitfall on steady state prediction. The assessment
analysis should focus on one validation step change
since the system transition and delay error would
substantially create confusion on the real prediction error.
From the performance optimization via parameter iteration

method, it is hypothesized that those influential
parameters are mtimately tied to the specified system
dynamics. The overall neural network performance for the
cases such as SISO system, perfect case, high noise-
influencing system, MISO system and uncertain system,
are fairly satisfying where the network able to capture the
nonlinearity and complexity of the system. The trained
single layer neural network is good m learning and
predicting even with the presence of disturbances and
process gain uncertainties. This network 1s also perceived
to be sensitive towards the magnitude of random noise
which mflicts sigmficant nonlinearity to the system
dynamics and the associated prediction error is known to
be proportional to the extent of random noise. The
network will always customize itself in nonlinear system
and shows its ability in understanding the complex
system dynamics with great learning efficiency.
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