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Abstract: The aim of this study is finding classical and Bayesian estimators for the shape parameter of the
Kumaraswamy distribution using un-grouped data and also considers relationship between them. We show
how the classical estimators can be derived from various choices made within a Bayesian framework. We
compare the classical estimators based on their Mean Squared Errors (MSE's). Then, we obtain Bayesian and
non-Bayesian estimators of the shape parameter of this distribution under Grouped data. Tn Bayesian
estimation, we consider three types of loss functions; the Squared error, Precautionary and General entropy
loss functions which are symmetric and asymmetric, respectively. In all cases, we considered both peint and
mterval estimations. These the point and mterval estimations are compared empirically using Monte-Carlo
simulation. Bayes approach under Precautionary loss function is best estimator for estimating the parameter
of Kumaraswamy distribution and this 15 true for both un-grouped and grouped data.

Key words: Likelihood estimator, prior distribution, loss function, reliability, credibility mnterval, Kumaraswamy

distribution

INTRODUCTION

In life testing experiments, we observe the failure time
of a component to the nearest hour, day or month. Data
for which true values are known only up to subsets of the
sample space are called grouped data (Alodat and
Al-Saleh, 2000; Surles and Padgett, 2001; Wu and Perloff,
2005; Pipper and Ritz, 2007). In general grouped data can
be formulated as follows: Let X, X,...., X, be a random
sample from the density f (x;8),xey%,06¢® and
%1» Ao Y1 D€ @ partition of the sample space ¥ and N,
the number of X,’s thatfallinforj=1,2,.., k+l. Theset of
pairs {0, Ny (e, N+ 1)} 18 called grouped data. The
grouped data problem 15 to use these data to draw
inferences about the parameter 8. Since we don’t have
complete information about the sample, then there will be
a loss in the information due to the grouping. Schervish
(1995) showed the following:

L (8)=1,(6)+ E,[Ly, (8]Y)]

where, I X (0) and [ Y (0) are the Fisher's information
mumber obtained from X and Y, respectively and
Eo[I X\Y (6\Y)] 1s the conditional score function. If we
replace Y by the grouped sample n= (N, N,,..., N,,,), then
I, (@21 (0)for all O, which means that the information
in the s-ample X about 6 is reduced to I, (6) because of

grouping. Kuldorff (1961) considered non-Bayesian
estimation from grouped data when the data come from
normal and exponential distributions. Alodat and Al-Saleh
(2000) considered the Bayesian estimation from grouped
data when the underlying distribution is exponential.
Alodat et al. (2007) obtamned Bayesian prediction intervals
from grouped data when the underlying distribution 1s
exponential. Aludaat et al. (2008) obtained the Bayesian
and non-Bayesian estimation from grouped data when the
underlying distribution 1s Burr type X.

The Kumaraswamy distributions were constructed by
Kumaraswamy (1980). Jones (2009) said about its
properties. The probability density function of a
Kumaraswamy distributed random variable 1s given by:
1,850, (1)

f(O=0at"" (1-t"* o<t<l,

where, 0 and A are shape parameters, respectively. Here
we assume that A parameter is known. The distribution
function 1s:

E(t:0)=1—(1-t")®  o0<t<l A.,6>0 2)

The rehability and failure rate functions of
Kumaraswamy distribution are given, respectively by:
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R()=(1-t*)® ; 0<t<l, 2,850 (3
And
-1
H(t)= 7;8ttl D 0<t<l, A,050 (4

Figure 1 shows the shape of for different values of 0
and A.

Bayesian estimators derived from an unproper prior
distribution can be use to derive the classical estimators.
The techmique of deriving the classical estinators from
the Bayesian estimator 1s not new. Rossman et al. (1998)
and Elfessi and Reineke (2001) presented some thought
provoking insights on the relationship between Bayesian
and classical estimation using the continuous uniform and
exponential distributions, respectively. We will explore
these relationships using the Kumaraswamy distribution
from un-grouped data.

CLASSICAL AND BAYESIAN ESTIMATIONS
BASED ON THE UN-GROUPED DATA

Here, first we obtain the classical estimators of and
compare these estimators based on their Mean Squared
Errors (MSE's) and then we get the Bayes estimators of
under the symmetric and asymmetric loss function and
show how the classical estimators can be derived from
various choices made within a Bayesian framework. Also,
we present the credible and confidence ntervals for 0.

Classical point and interval estimations: Let X, X,,..., X,
be a random sample from density (Eq. 2). The likelihood
function 1s given by:

5 — Theta= 0.5, Lhanda = 0.5
459\ - - Theta=5, Lhanda =1
4- \ --- Theta=1, Lhanda=3
\ ——Theta =2, Lhanda =2
3.5 N Theta =5, Lhanda =2
g 3
I 2.5
>
2 =
1.5 4
l 7 A
054

0 F—

X

Fig. 1. Pdf of Kumaraswamy for different values of 0
and A

a n &
L©)= ([ [x)" {H(lf x )J )

i=1

Then the log-likelihood function 1s:

¢6)=nln®+ (8- I)anlog(l—x‘l Y+ (- I)anlogxi (6)

il i
Hence,

O n <& N
— =" > log(l-x")=0
» o Zl og(l—x')

Thus the MLE of 1s:

n

- (N
> log(1-x})

Ohae

n
T

where,
T=->log(l-x})
i=1

The above estimator obtained by Gupta and Kundu
(1999).

Here, we obtain the Uniformly Minimum Variance
Unbiased Estimator (UMVUE) of 8. since family of
density (2) belongs to an exponential family, therefore,
statistic T is a complete sufficient statistic for 6. Tt is easy
to show that statistic T 1s distributed as gamma
distribution with parameters n and 1/6, with the density:

gt)=——t"'e®t> 0,050,

v t
L®)

1 9
E(=)=—1oo
e(T) 1-1

Hence, the UMVUE of 1s:

8 (8)

n-1
UMVUE :T-

We can find the Minimum Mean Squared Error
(Min MSE) estimator in the class of estimators of the form
¢/T. Therefore:
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MSE () =Bl =071 = Var () + [B() - OF

Where as:
EB(TI)=F(H+T), n+rx0
0" T(n)
thus:
c. ay_.alfn-1) ¢c8
E(¥)—CE(T )=c8 T B
And:
. 4 a4y ¢
Var(¥)7c Var(T )77(1171)2(1172)
Then:

MSEB(C)B{ ‘;2 { ¢ 4} }r(c) &)
T (n-1¥(n-2) \{(n-1)

The derivative of r (c) is:

r'(c)=6{ fc +2( ¢ —1}( ! ]:|=0
M @-2) @ a1

That thereby ¢ = n-2. Thus, the Min MSE estimator of

6 is:

n-2 (10)

fart]

MirhSE —

From Eq. 7, the MSE of the classical estimators of are
calculated as follow:

n+2)

M) Hw2)

o &
MSEe (eUMVUE ): 4
n-2
And

- o
MSE, (eMmMSE )=
n-1

Easily can show that:

MSE, (8,050 ) < MSE, (B0 ) < MSE (8,.)

Now, we find a 100 (1-1)% confidence interval for 6
with obtamn L and U, where. P(L<0<1)=1-1. Let X, X.....,
¥, be a random sample from Kumaraswamy. Since,T ~

(n,1/8), there by 20T ~%*(2n), thus
P{xénagk T < xin(g)}l—r
or

3 T 2 T
%2n(1__) %2n(_)
P 2 _p 2
2T 2T

1-1

Therefore a classical 100 (1-1)% confidence interval
for 8 is given by:

T T
Yzl ) xﬁn(a)

2> log(1-x) —2> log(l—-x})
i=1 i=1

Bayesian point and interval estimations: Here, we obtain
the Bayes estimators of 6 under the improper prior
distribution. Consider the improper prior distribution
(i,e., I:Tt(e)de=°0) for 6 of the form:

(e)=6""e" >

8220, -oot=Zoo, B0

Notice that this prior distribution is the kernel of a

Gamma distribution when «>0. However, such a

restriction on ¢ is not necessary and decreases the
flexibility of the resulting estimator. Whereas
(0| x) = L{0) (0} | therefore the posterior distribution of 0

150

N oy
(0| x)oc B {H(l— x} ):[ gt

o G exp[—e{ﬁ ~ > log(1 - % )D

o 0 exp(—=0F + )
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where:
t=—>"log(l—x})
=1

The posterior distribution of 0 is proper when,
n+e=0, 1.e.

1
Ox~T'(n+o,——
|x~I( mﬁﬂ)

In this case, the Bayes estimator of 6 under Squared
error loss function 1s the posterior mean, 1.¢:

A n+ao
B = 11
e an

Where,

T=-%log(1-X})

i=1

The above estimator obtained by Kundu and Gupta
(2008). The classical estimators derived in the previous
subsection can be obtained from the above Bayes
estimator. To do this, we put the different values of «
and B. For example, If ¢ = Gand = 0then &, =8,
and the prior distribution is the Jeffreys' prior,
1 (0)<1/0 (Lehmann and Casella, 199%8). If ¢ = 0 and
p=0then &, =8, and if @ = 0 and p = Othen
Oy =Oyans . For @ = 0 and B = O the prior distribution
reduce to the flat improper prior distribution, i.e. 7 (6o 1.
In this case the resulting estimator is (nt1¥T. We saw
that a Bayesian analysis with a simple family of improper
prior distributions provides a direct link among several
classical estimators.

Now, we obtained the Bayes estimator of 6 under an
asymmetric loss function. Norstrom (1996) introduced an
alternative asymmetric precautionary loss function and
also presented a general class of precautionary loss
function with quadratic loss function as a special case.
These loss functions approach infinitely near the origin to
prevent underestimation and thus giving conservative
estimators, especially when low failure rates are being
estimated. These estimators are very useful when
underestimation may lead to serious consequences. A
very useful and simple asymmetric precautionary loss
function is:

L(6,6)= ©-9o (12)
"

The Bayes estimator under this asymmetric loss
function is denoted by &, and may be cbtained by

solving the following Eq:

e _ _BO[x) 13
eé"‘E(e"\;c) a3

This special case of the Precautionary loss function
(Eq. 10) and the Entropy loss function are the same
(Norstrom, 1996).

As said, under the gamma prior distribution, 1.e:

6>0,0L>0,[3>0n(8)=%6“"e'm (14)

the posterior density of 0 is gamma with the shape and
scale parameters as & + n and 1/B+t), respectively,
therefore:

Pt
E(8|§)7(n+ a—1)

Hence, the Bayes estimator of 6 with respect to the
precautionary loss function under the gamma prior
distribution 1s as follows:

b =,/(n+ a)n+ao—1) (15)
B+T

BF

Where:

T=3log(l+X})

i=1

In many practical situations, it appears to be more
realistic to express the loss in terms of the ratio 8/ . In this
case, a useful asymmetric loss function 1s the General
Entropy (GE) loss proposed by Calabria and Pulcini
(1996):

L,(8.6) o« (§/0)" — qlog(8/6) -1 (16)

whose minimum occurs at 6=0. This loss function is a
generalization of the Entropy loss used by several authors
where the shape parameter g = 1, (Dey and Liu, 1992).
When g>0, a positive error (8>0) causes more sericus
consecquences than a negative error. The Bayes estimate Byox
of 8 under the General Entropy loss (Eq. 16) is:

B0g = [E {877 a7

Provided that By {07 exists and 1s fimte, where, E,
denoted to the expected wvalue with respect to the
posterior function of 6.

The Bayes estimator of 0 with respect to the General
Entropy loss function under the gamma prior distribution
15 as follows:
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b | R (18)
I'n+ o) Bp+T

where,
T=—3"log(1-X})
i=1

The Bayesian analog to the confidence interval is
called a credibility interval. Tn general, the interval
(L(x), U(x)) 1s a 100 (1-1)% credibility mterval for 0 ift

P(L(x)<0< U@)):J‘L”S’ (B x)d6=1-1
Since,

1
O|x~T(n+o,——
T )

Thereby, 26 (B+T)~%* (2(n+a)), thus:

Koo =)
2B+ T)

L) |
2B+T) |

Therefore, a 100 (1-1)% Bayesian credibility interval
for 6is (L(x), Ux)) where:

2 1-*
X2(p+T)( 2) (1 9)

L)=—a——F=——
2[[3— > log(l—x; )]

And:

T
xﬁ (B+T) (E)

U, (20)
2[s—zlog(kx?)}

The classical and Bayesian mterval estimators are
therefore the same when ¢ =0 and p = 0.

CLASSICAL AND BAYESIAN ESTIMATIONS
BASED ON THE GROUPED DATA

Here, we obtain the MLE and Bayes estimators of 6
and also the Fisher's mformation number when the data

given in Groups. Also, we use the Fisher's information
number to construct a Asymptotic Confidence interval

for 0.

Likelihood function and MLE: Here, first we derive the
likelihood density based on the grouped data. Let X,
¥,..» X, be a random sample from Kumaraswamy.
Assume that the sample space of f (x; 0) is partitioned into
k+1 equally-spaced intervals as follows. Let I, = [(j-1)8, j&),
1= L. kand I, = [kd.1), &>0. If N; denotes the number
of X 'sthatfallinI,j=1,2,., kt]l, then n =N, +..+ Ny,
Let:

P =P(®)=PXcI)=P((j-15<X<jd)
=[-((j-18)]° -N-G8’]°

Forj=1, . kand P, =P, (8) =P(X>kd)=(1- (k8)")* . Tf we
let, A;=logl- ((G-1)8)"), then P =e*-e™ forj=1,. k
and B, ="+ . So the density of n = (N, N,,..., Ny.;) 18
given by the multinomial distribution as follows:

n! Pﬂl . _Pﬂlul

k+

fw9)= L oo
nt..ny, (21)

k
- C(ee-“m Yun H(eeA" _ gt )
=1

where, C 18 a normalizing constant.

In contimue, we find the MLE of 0 based on the
density (20). To do this, we maximize the log likelihood
function:

B4 B4

i 1
e )+ O Ay

k
log f(n; @) = constant + Zn] log (e

=1

The first derivative of the log-likelihood is:

Slog f(n; 0) —zk:n AJBGAJ' -A,e
N B _ o

Bhi

(22)

+ 1rlk-t—l‘A‘kH

=1

The MLE for 0 is the sclution of dlogf(n;8)/86=0_ So
the M.L.E is 6 such that:

B Aet A g
Zn] : 9 ]éi\l :7nk+1Ak+1 (23)
=1 e —e "

We use 8,, the notation to denote the M.IL.E of 6
obtained from the Grouped data. We can solve (21) by
Newton-Raphson method Hence,

equation is:

solution of the
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h(@)
=0 — 1,23 24
i+ i h,(e) 1 23 ( )
where,

" eBAJ _ A+ eeA

h(e) Z 1%711 nk+1A‘k+1k+1

=) e i—e

And

LA Ve BuC g0

k
w@®)=-3'n JQA—QAQ
=l —e’ )

Here, the initial solution 8, should be selected from
the MLE of 6 based on the un-grouped data.

Fisher'sinformation number and confidence interval: To
find the fisher's information number contained in the
grouped sample about 8, we find the expectation of the
second derivative of the log-likelihood. So:

& log f(n; 0) __in ¥ (6) (25)
where,
2 %(AJrA 1)
vt M
e —e™")

If1.(0) denotes the Fisher's information number from
grouped data, then:

_ | @logf(e)
L

And since, E[N;] = nP,, thus:

)2 es(A 4,10

IG(8)=E{ZIC:NJ‘PJ(G):|_HZJ”—! (26)

Using 15(0), we can find a large sample (1-a) 100%
confidence interval for 6 as follows:

B £ 2ol B 27

Simple calculations can show that the Fisher's

information number about 8 in a random sample
X, ¥,.... X, from (1)is I(6) = n/6°.

Bayesian estimation: Here, we obtain the Bayes
estimators of 6 under the Gamma prior distribution,
Eq. 13, with respect to the Squared Error and
precautionary loss functions when the data given in
groups.

Using the Binomial theorem, we rewrite the likelihood
function of the grouped data, Eq. 17, as follows:

f(m)= Cp Prusrss 11‘[2[ J l)fj (BBAM)“J"IJ (eeAj )fj

i g=0

S (e

R L

(28)

where:

x x
V:nkHA‘kH + Z(n] 71})A]+1 +ZI-JAJ
=1 =l

Combining the likelihood information with the prior
information yields the posterior distribution 6 of given n,
Le:

__ f6)-mE)
J‘ f(19)- 7(6)dD

£ 5 e

g0 g0

m0n)

So we get:

n Ty, 111 nk e
(71)!1+ g le 8-V
% nlz[m J [IJ (29)
F(a)Z“'Z[nl}'@‘}(—D“*““*(B—V)‘m

b

Where,
k k
V= n1c+1A‘k+1 + z(n] - rj )A]+1 +ZI'] AJ
=1 =l

The Bayesian estimate of 6 with respect to the
squared error loss function from the Grouped data, say
Bsq , is the posterior mean, i.e.,

R S R I % PR
)R ) A

Boss =E(0| 1) = 0 ad

30 (e

P L

The Bayesian estimate of 6 with respect to the
Precautionary loss function from the Grouped data, say
B . 15 Obtained as follows:
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SOy LI
% Y5 I

SR : @l
Ol(OL—l)z——72{?},{1‘](_1)& BV (31)

5=0  5=0

Zi[ﬂ&“}@l) (P

P 50

The Bayesian estimate of 0 with respect to the
General Entropy loss function from the Grouped data, say
6rers , 15 Obtained as follows:

Ogazs =[E, (0731

4=0  4=0

F(a)i--i@ HBH’# RN

10 ge=0

Now, we compare all these estimators in terms of
Biases and Mean Squared Errors (MSE's), using Monte-
Carlo simulation.

SIMULATION STUDY

The estmators s, Snvue , Ousasse » s 5 O and By are
the classical and Bayesian estimations of the shape
parameter of the Kumaraswamy distribution obtained from
the un-grouped data. Meanwhile &, 8., e and 8
are the MLE and Bayes estimators of 6 under the
Squared-error, Precautionary and General Entropy loss
functions, respectively, based on the Grouped data. We
also use the notations CL and BCL to denote the 95%
Confidence and Bayesian Credibility Length, respectively
for @ based on the un-grouped data and use notation CLG
to denote the 95% Confidence Length for 6 based on the
Grouped data.

Our main aim is to compare these estimators in terms
of Biases and MSE's. As mentioned earlier, 8,, and hence
its MSE can not be put in a convenient closed form.
Therefore, MSE's of the estimators are empirically
evaluated based on a Monte-Carlo simulation study of
1000 samples. We generated these samples from
Kumaraswamy distribution with 8 = 2 by using MATLAB.

The simulation study was carried out with sample size
N =6,.8,10,12,15 and 20. We put these samples mto five
mtervals (k = 4) with & = 1/5. Prior parameters are
arbitrarily taken as ¢ = 2 and B = 1. All the results are
summarized mn Table 1 and Fig. 2-4.

CONCLUSION

In this study, we obtammed Bayesian and
non-Bayesian estimators for the shape parameter of the

Kumaraswamy distribution based on the grouped and
un-grouped data. Meanwhile, we have shown the
relationship of DBayesian estimators of the shape
parameter of this distribution to three classical estimators,
namely the MLE, UMVUE and Min MSE estimator and
illustrate how Bayesian methods can vyield classical
estimators. We considered both pomt and mterval
estimators. We derived the Bayes estimators under
symmetric and asymmetric loss functions. Our
observations about the results are stated in the following
points:

Table 1 shows that the Bayes estunates under
Squared Error and precautionary loss functions have the
smallest estimated MSE's as compared with the classical
estimates, These are true for both un-grouped and
grouped data. Also, the Bayes estimates under the
precautionary loss function have the smallest estimated
MSE's as compared with the Bayes estimates under
squared error and general entropy loss functions. These
are true for both un-grouped and grouped data, (Fig. 2, 3).
Tt is immediate to note that MSE's decrease as sample size
increases. On the other hand the Bayes estimates and the
MLE's are overestimation, this 1s true for the un-grouped
data, but UMVUE's and the Min MSE estimates are
underestimation. Also MLE's are underestimation but
Bayes estimates are overestimation for grouped data.
Meantime, the confidence intervals work quite well unless
the sample size 13 very small and this 1s true for both
un-grouped and grouped data.

Whereas, the performance of the Bayes estimates
under Precautionary loss function are better than the rest,
thus we suggest to use DBayes approach under
Precautionary loss function for estimating the
parameter of Kumaraswamy distribution and this is true

1.6 —e—MLE

—a— UMVUE
14 —— MinMSC

—A— Bayes under squared error loss
12 —+— Bayes under precautionary loss

—o— Bayes under general entropy error loss

1.0

0.8

Y =MSE

0.6

0.4

0.2

Fig. 22 MSE's of the Classical and Bayesian point
estimators based on the Ungrouped data, for
different values of n
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Table 1: Biases and Mean Squared Errors (MSE's) of the Point Estimates, and Lengths of the Interval Estimates from the un-grouped and grouped data, when

k=4,8=1,8=2 =2 (=1, A=2and 1 = 0.05 (MSE in parenthesis)

eESG 8EFGEG
n P P e CL A A =-3 BCL e A i =-3 CLG
BMI.E 8UI\JI\/'UE el\/‘ln'll\/’lSE eBS eBP 4 eMlEG eESG eBPG 4
6 03725 -0.0229 -0.4183 3.7432 0.2038 0.0615 0.4805 1.9895  -0.2225 0172 0.0177 04806  3.0957
-1.5669 -0.9923 0.8097)) -0.5121 -0.4155 -0.8501 -1.4898  -0.5373  -0.427 -0.8884
8 0.2553 -0.0266 -0.3085 3.0022 0.1648 0.0538 0.3747 1.7719  -0.2442  0.1277  0.0154  0.4le 2.56
-0.8063 -0.5681 0.5121)) -0.4201 -0.3565 -0.6132 -1.1335  -0.4332  -0.4137  -0.0024
10 0.2069 -0.0137 -0.2344 27122 0.138 0.047 0.3116 1.6136  -0.2187 0.1264 00106 03375 2.1259
-0.6415 -0.4851 0.4381)) -0.3415 -0.2987 -0.474 -0.9182 -0.4222  -0.3695 -0.6119
12 0.1626 -0.0176 -0.1978 2.4296 01211 0.0439 0.2692 1.4941  -0.1804 01195  0.0231 0.258 1.7989
-0.5908 -0.4745 0.4311)) -0.3093 -0.2755 -0.4097 -0.7782  -0.3477  -0.3223 -0.4137
15 0.1294 -0.0125 -0.1545 2.1428 0.0841 0.0219 0.2512 1.3486  -0.1901 0.0961 0.004 0.211 1.6431
-0.3564 -0.296 0.2790)) -0.2512 -0.2202 -0.3149 -0.6748  -0.3035 -0.263 -0.361
20 0.0845 -0.0197 -0.1239 1.8192 0.0703 0.0227 0.163 1.1859  -0.1868 0.133 0.0197  0.1846 1.502
-0.2137 -0.1868 -0.1827 -0.2081 -0.1944 -0.2483 -0.5785 -0.2692  -0.2504  -0.2897
1.6 - e MLE very well. Therejfore,. we can use the est]matprs .preseni.:ed
L —a— Bayes under squared error loss when the data given in Groups, for example in life testing
1.4 1 —— Bayes under precautionary loss exp eriments
—o— Bayes under general entropy error loss ’
12
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