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Abstract: Logistic regression is one of the most frequently used statistical methods as a standard method of
data analysis in many fields over the last decade. However, analysis of residuals and identification of influential
outliers are not studied so frequently to check the adequacy of the fitted logistic regression model. Detection
of outliers and mfluential cases and corresponding treatment 1s very crucial task of any moedeling exercise. A
failure to detect influential cases can have severe distortion on the validity of the inferences drawn from such
modeling. The aim of this study is to evaluate different measures of standardized residuals and diagnostic
statistics by graphical methods to identify potential outliers. Evaluation of diagnostic statistics and their
graphical display detected 25 cases as outliers but they did not play notable effect on parameter estimates and
summary measures of fits. Tt is recommended to use residual analysis and note outlying cases that can
frequently lead to valuable insights for strengthening the model.
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INTRODUCTION

Often the outcome variable m the social data 1s in
general not a continuous value mstead a binary one. In
such a case, binary logistic regression is a useful way of
describing the relationship between one or more
independent variables and a binary outcome variable,
expressed as a probability scale that has only two
possible values. Indeed, a generalized linear model is used
for bmary logistic regression. The most attractive feature
of a logistic regression model is neither assumes the
linearity m the relationship between the covariates and
the outcome variable, nor does it require normally
distributed variables. Tt also
homoscedasticity and i general has less stringent
requirements than linear regression models. Thus logistic
regression is used in a wide range of applications leading
to binary dependent data analysis (Hilbe, 2009; Agresti,
2002).

The vast majority of the work related to the logistic
regression appears in the experimental epidemiological
research but during the last decade it is evident that the
technique 1s frequently used in observational studies. But
analysis of residuals and the identification of outliers and
influential cases are not studied so frequently to check
the adequacy of the fitted model. Data obtained from

does not assume

observational studies sometimes can be considered as
bad from the point of view of outlying responses. The
traditional method of fitting logistic regression models
with maximum likelthood, has good optimality properties
in ideals settings, but is extremely sensitive to bad data
obtained from observational studies (Pregibon, 1981).
Frequently in logistic regression analysis applications, the
real data set contains some cases that are outlier; that 1s
the observations for these cases are well separated from
the remainder of the data. These outlying cases may
involve large residuals and often have dramatic effects on
the fitted maximum likelihood linear predictor. It 1s
therefore, important to study the outlying cases carefully
and decide whether they should be retained or eliminated
and 1if retained, whether their mfluence should be reduced
in the fitting process and/ or the logistic regression model
should be revised (Menard, 2002; Hosmer and Lemeshow,
2000).

For logistic regression with one or two predictor
variables, it 1s relatively simple to identify outlying cases
with respect to their X or Y values by means of scatter
plots of residuals and to study whether they are
influential m affecting the fitted linear predictor. When
more than two predictor variables are included in the
logistic regression model, however, the identification of
outlying cases by simple graphical methods becomes
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difficult. In such a case, traditional standardized residual
plots can highlight little regarding outliers and some
derived statistics and their plots from basic building
blocks with lowess smooth and bubble plots are potential
to detect outliers and influential cases (Kutner ef al., 2005,
Hosmer and Lemeshow, 2000).

There are three ways that an observation can be
considered as unusual, namely outlier, influence and
leverage. In logistic regression, a set of observations
whose values deviate from the expected range and
produce extremely large residuals and may indicate a
sample peculiarity is called outliers. These outliers can
unduly mfluence the results of the analysis and lead to
mcorrect mferences. An observation 1s said to be
mfluential if removing the observation substantially
changes the estimate of coefficients. Influence can be
thought of as the product of leverage and outliers. An
observation with an extreme value on a predictor variable
15 called a point with high leverage. Leverage 1s a measure
of how far an independent variable deviates from its mean.
In fact, the leverage indicates the geometric extremeness
of an observation in the multi-dimensional covariate
space. These leverage points can have an unusually large
effect on the estimate of logistic regression coefficients
(Cook, 1998).

Christensen (1997) suggested that 1f the residuals in
biary logistic regression have been standardized in some
fashion, then one would expect most of them to have
values within £2. Standardized residuals outside of thus
range are potential outliers. Thus studentized residuals
less than -2 and greater than +2 defimtely deserve closer
ingpection. In that situation, the lack of fit can be
attributed to outliers and the large residuals will be easy
to find m the plot. But analysts may attempt to find group
of points that are not well fit by the model rather than
concentrating on individual points. Techniques for
judging the influence of a point on a particular aspect of
the fit such as those developed by Pregibon (1581) seem
more justified than outlier detection (Jernings, 1986).

Detection of outliers and influential cases and
corresponding treatment 1s very crucial task of any
modeling exercise. A failure to detect outliers and hence
mnfluential cases can have severe distortion on the validity
of the inferences drawn from such modeling exercise. Tt
would be reasonable to use diagnostics to check if the
model can be improved in case of Correct Classification
Rate (CCR) is smaller than 100. The main focus in this
study is to detect outliers and influential cases that have
a substantial impact on the fitted logistic regression model
through  appropriate
smoothing technique.

graphical method ncluding
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MATERIALS AND METHODS

The Bangladesh Demographic and Health Survey is
part of the worldwide Demographic and Health Surveys
program, which 1s designed to collect data on fertility,
family planmng, maternal and child health. The BDHS 15
a source of population and health data for policymakers
and the research community. BDHS-2004 is the fourth
survey conducted in Bangladesh and preparations for the
survey started in mid-2003 and field work was carried out
between January and May 2004. We have been using the
women’s data file. A total of 11,440 eligible women were
furnished their responses. But in this analysis there are
only 2,212 eligible women those are able to bear and
desire more cluldren are considered. The women under
sterilization, declared m fecund, divorced, widowed,
having more than and less than two living children are not
involved in the analysis. Those women who have two
living children and able to bear and desire more children
are only considered here during the period of global two
children campaign.

The variable age of the respondent, fertility
preference, place of residence, highest year of education,
working status and expected number of children are
in the analysis. The variable fertility
preference mvolving responses corresponding to the
question, would you like to have (a/another) child? The
responses are coded O for no more and 1 for have another
15 considered as desire for children which is the binary
response variable (Y) i the analysis. The age of the
respondent (X)), place of residence (X,) 1s coded O for
urban and 1 for rural, highest year of education (),
working status of respondent (X,) 15 coded 0 for not
working and 1 for working and expected number of
children (X,) is coded 0 for two and 1 for more than two
are considered as covariates in the logistic regression
model. Several standardized residual plots, lowess smooth

considered

and diagnostic plots are used to detect influential outliers.

FORMULATION OF THE BINARY RESPONSE
MODEL

The binary logistic regression model computes the
probability of the selected response as a function of the
values of the explanatory variables. A major problem with
the linear probability model is that probabilities are
bounded by 0 and 1, but linear functions are inherently
unbounded. The solution is to transform the probability
so that it is no longer bounded. Transforming the
probability to odds removes the upper bound and natural
loganithm of odds also removes the lower bound. Thus,
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setting the result equal to a linear function of the
explanatory variables yields logit or binary response
model (Allison, 1999).

Suppose i a multiple logistic regression case, a
collection of k explanatory variables be denoted by the
vector X' = (¥, X,,... X}). Let the conditional probability
that the outcome 1s present be denoted by P (Y =1|X) =
B(X). It 1s evident that Sigmoidal-shape
configuration has been found to be appropriate in many

Curve

applications for which the outcome variable is binary and
the comesponding model having more than one
explanatory variable can be written as:

Yi:e‘(X)ﬁ—ei; i=1,2..n (D

Where:
__exp(Z;) 2
ei(X)ilﬁ—exp(ZJ @

with 7, = B+, X, P35 +...+ Xy, = Xp. Here Y is nx1
vector of response having v,=0 if the ith case does not
possess the characteristic and y, = 1 if the case does
possess the characteristic under study, X is an n » (k+1)
design matrix of explanatory variables, B is a (I+1) x1
vector of parameters, € 15 also an nxl vector of
unobserved random errors. The quantity 6, is the
probability for the ith covariate satistying the important
requirement 0<6,<1. Then the log-odds of having Y = 1
for given X 1s modeled as a linear function of the
explanatory variables as:

E(Y|X)= &= ln[l f)le J— B+ BX, +BX, +-+BX, (3
The function:
_ exp(XB)
Tt exp(XB)

18 known as logistic function. The most commonly used
method of estimating the parameters of a logistic
regression model is the method of Maximum Likelihood
(ML) instead of Ordinary Least Square (OLS) method.
Mainly for this reason the ML method based on Newton-
Raphson iteratively reweighted least square algorithm
becomes more popular with the researchers (Ryan, 1997).
The sample likelihood function 1s, in general defined as
the joint probability function of the random wvariables
whose realizations constitute the sample. Specifically, for
a sample of size n whose observations are (y,, ¥5 ... Vo)
the corresponding random variables are (Y,, Y,, ...Y,).
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Since the Y, is a Bernoulli random variable, the probability
mass function of Y, is

£ 4

i

(V)=0%(1-0)";Y,=0orlandi=1,2..n

Since Y's are assumed to be independent, the log-

likelihood function L (B) is defined as:

el

L(B)—;Y‘ln{le (5)

[ Smat-o)
i i=l

For convenience in multiple logistic regression
models, the likelihood equations can be written in matrix
notation as

dL
LB _yv-e) (6)
o
1 X, Xy Xu Y \
1 X X X Y. £}
Where X = . :12 :22 :kz LY =] 2 and 0= :2
1 X, X, K s (k+1) i 1 lned

Now, theoretically putting:

ALE)_,

o

produces Y=0, satisfying x'(v-¥)=0. In fact, the
maximum likelihood estimates of B in the multiple binary
logistic regression models are those values of P that
maximize the log-likelihood function given in Eq. 5. No
closed form solution exists for the values of £ that
maximize the log-likelihood function. Computer-ntensive
numerical search procedures are therefore required to find
the maximum likelihood estimates p and hence 8, because
the multiple logistic regression model computes the
probability of the selected response as a function of the
values of the predictor variables. There are several widely
used numerical search procedures, one of these employs
iteratively reweighted least squares algorithm. In this
study, we shall rely on standard statistical software
programs specifically designed for logistic regression to
obtain the maximum likelihood estimates of parameters.

GOODNESS-OF-FIT OF THE MODEL

In order to check the goodness-of-fit of an estimated
multiple logistic regression model one should assume that
the model contains those variables that should be m the
model and have been entered in the correct functional
form. The goodness-of-fit measures how effectively the
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model describes the response variable. The distribution of
the goodness-of-fit statistics is obtained by letting the
sample size n become large. If the number of covariate
pattemns increases with n then size of each covariate
pattern tends to be small. Generally, the term covariate
pattern is used to describe a single set of values for the
covariates in the model. Distributional results obtained
under the condition that only n become large are said to
be based on n-asymptotic. The case most frequently
encountered in practice that the model contains one or
more continuous covariates. [n such a situation the
number of covariate patterns 1s approximately equal to the
sample size and the cumrent study contains two
continuous covariates and the number of covariate
pattemns may not be an 1ssue when the fit of the model is
assessed. To assess the goodness-of-fit of the model,
researcher should have some specific idea about what it
means to say that a model fits. Suppose we denote the
observed sample values of the response variable in vector
form as Y where, Y' = (y,, y5,... v.) and the corresponding
predicted or fitted values by the model as ¥'=($,.9,. - 9.).
We may conclude that the model fits if summary measures
of the distance between Y and Y are small and the
contribution of each pair (y.§.),1=1, 2, ..., n to the
summary measures is unsystematic and is small relative to
the error structure of the model. Thus, a complete
assessment of the fitted model involves both the
calculation of summary measures of the distance between
Y and ¥ and a thorough examination of the individual
components of these measures. When model building
stage has been completed, a series of logical steps should
be used to assess the fit of the model. The components of
proposed approach are: (1) computation and evaluation of
overall summary measures of fit, (2) examination of the
individual components of the summary statistics with
appropriate graphics and (3) examination of other
measures of the distance between the components of Y
and ¥ (Hosmer and Lemeshow, 2000). The summary
measures of goodness-of-fit, as they are routinely
provided as program output with any fitted model and
give an overall indication of the fit of the model. The
different summary measures like likelihood ratio test,
(Hosmer and Lemeshow, 1980) goodness-of-fit test,
(Osius and Rojek, 1992) normal approximation test,
(Stukel, 1988) test and other supplementary statistics
indicate that the model seems to fit quite well. Tt is also
evident that the individual predictors in the fitted model
have significant contribution to predict the response
variable through likelihood ratio test as well as Wald test
(Sarkar and Midi, 2010). The elaboration of these
measures 15 beyond the scope of the study. Before
concluding that the model fits, it 1s crucial that other
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measures be examined to see if fit is supported over the
entire set of covariate patterns. This 1s accomplished
through a series of specialized measures falling under the
general heading of residual analysis and regression
diagnostics (Cook and Weisberg, 1982).

RESIDUAL ANALYSIS AND RESIDUAL PLOTS

Residual analysis for logistic regression 13 more
difficult than the linear regression models because the
responses take on only the values 0 and 1. Thus the ith
ordinary residual will assume one of the two values as:

: :{pei iy, =1 (7)
-6 ifY,=0

The ordmnary residuals will not be normally
distributed and, indeed their distribution under the
assumption that the fitted model 13 correct 1s unknown.
Plots of ordmary residuals agamst fitted values will
generally be uninformative. Tn linear regression a key
assumption 1s that the error variance does not depend on
the conditional mean E (Y[X). However, m logistic
regression, there are binomial errors and, as a result, the
error variance is a function of the conditional mean as V
(Y2) =10 (1-0). Hence, the ordinary residual can be made
more comparable by dividing them by the estimated
standard error of Y, which 1s known as Pearson residual
denoted by pr, and defined as:

(8)

The Pearson residuals are directly related to the
Pearson chi-square goodness-of-fit statistic. The square
of Pearson residual measures the contribution of each
binary response to the Pearson chi-square test statistic
but the test statistic does not follow an approximate chi-
square distribution for binary data without replicates. The
Pearson residuals do not have unit variance since no
allowance has been made for the inherent variation in the
fitted value 8 . A better procedure is to further standardize
the ordnary residuals by their estimated standard
deviation that is called studentized Pearson residuals. The
standard deviation is approximated by:

6,(1-6)0-h,)
where:

H- \;'\f%x:(){*w:x:)1 XW
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h; is the ith diagonal element of the n*n estimated hat
matrix H, whereby in logistic regression it is called hat
diagonal or Pregibon leverage and measures the leverage
of an observation. More clearly leverage 1s a measure of
the importance of an observation to the fit of the model.
Here, W is the nxn diagonal matrix with elements
) (1 - é}) . X 18 the nx (k+1) design matrix defined earlier.

The hat matrix for logistic regression
approximately the expression &' =HY where, ¢ is the nx1
vector of linear predictors. Then studentized Pearson
residuals spr; are defined as:

satisfes

(-8)

r = = 1 9
Y TS T ®

Studentized Pearson residuals are primarily helpful n
dentifying influential observations and those build in
information about the influence of a case, whereas
Pearson residuals do not. More influential cases with high
leverages result in high studentized Pearson residuals.
Studentized Pearson residuals approximately follow the
standard normal distribution for large (n=30) sample and
it can be used as an approximate chi-square distribution.

Deviance residual 1s another type of residual. It
measures the disagreement between any component of
the log likelihood of the fitted model and the
corresponding component of the log likelihood that would
result if each point were fitted exactly. Smce, the logistic
regression uses the maximum likelihood principle, the goal
in logistic regression is to minimize the sum of the
deviance residuals. Deviance residuals can also be useful
for identifying potential outliers or misspecified cases in
the model. The deviance residual for the ith case is
defined as the signed square root of the contribution of
that case to the sum for the model deviance as:

& - sen(¥,-0 )2 ¥1n(8)+ (- )m(-8) | * A0

McCullagh and Nelder (1989) expressed a preference
for the deviance residuals because they are closer to
being normally distributed than are the Pearson residuals.
Approximate normality 1s certainly a desirable property of
residuals, but it 1s also desirable to use some type of
residual that will detect influential cases for necessary
modifications to a logistic regression model so as to
unprove CCR. Like Pearson residual the square of each
deviance residual measures the contribution of each
binary response to the deviance good ness-of-fit statistic.
Studentized Pearson residuals, deviance residuals and
Pregibon leverage are considered to be the three basic
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Table 1: Binary logistic regression residuals and hat matrix diagonal
elements for BDHS-2004 data

Case

0 (2) (3) (C)] (6)] (@ @]
i Y, 8 g pr; spr; dr; hy
1 0 0.2579 -0.2579 -0.5896 -0.5903 -0.7724 0.0025
2 0 0.2889 -0.2889 -0.6374 -0.6378 -0.8258 0.0011
3 1 0.7418 0.2582 05900 0.5907 0.7729 0.0024
2210 0 0.1918 -0.1918 -0.4872 -04879 -0.6527 00029
2211 0 0.2507  -0.2507 -0.5784 -0.5790 -0.7597 0.0023
2212 1 0.1336 0.8664 25466 25494  2.0065 0.0022

building blocks for logistic regression diagnostics in
detection of influential outliers and shown mn Table 1.

A good way of looking at the impact of various
residuals 1s to graph them against either the predicted
probabilities or simply case numbers. Since the sample
size of the current study is large enough, the various
residuals are plotted against the predicted mean response
or estimated logistic probability instead of case numbers
in Fig. 1. Different residual plots exhibited in Fig. la-d
indicate two trends of decreasing residuals with slope-1.
These two linear trends result from the fact that the
residuals take on just one of two values at a point X, 1-6,
or 0-6,. Plotting these values against estimated logistic
probability will always produce two linear trends with
slope -1. The remaining plots lead to similar patterns. It 1s
visualized from Fig. 1c and d, a few residuals appear with
magnitude less than -2 and greater than +2 and beyond of
this range definitely deserve closer inspection because
standardized residuals outside of this range are potential
outliers. If the logistic regression model were 1n fact true,
one would expect to observe a horizontal band with most
of the residuals falling within +2 (Christensen, 1597).
Under the existing 2-o rule, the standardized residuals
outside of +2 may be considered as potential outliers and
those are clearly visualized in Fig. 1¢ and d.

Tt is well known phenomena that in ordinary linear
regression, residual plots are useful for diagnosing model
inadequacy, non constant variance and the presence of
potential outliers in response as well as in covariate
space. Non constant variance is always present in the
logistic regression setting and response outliers are
difficult to diagnose. So, the current study focused on the
detection of model inadequacy and potential outliers in
the covariate space only. If the logistic regression model
1s correct, then E (Y)) = 0, and it follows asymptotically
that E(Y,-§)=E(g)=0.

This suggests that if the model is correct and no
sigmificant mcorporation of potential outliers, a lowess
smooth of the plot of the residuals against the estimated
logistic probability or linear predictor should result
approximately in a horizontal line with zero intercept. Any
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Fig. 2: Standardized Residual Plots with lowess Smooth for BDHS-2004 Data

significant departure from this suggests that the model
may be inadequate and potential outliers may have
dramatic impact on the fit of the model. The lowess
smooth of the studentized Pearson residuals and deviance
residuals are demonstrated in Fig. 2. In Fig. 2a and b, the
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studentized Pearson residuals and deviance residuals are
plotted against the estimated logistic probability
respectively and in both case, the lowess smooth
approximates a line having zero slope and intercept.
Hence, it can be concluded that no sigmficant model
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inadequacy and presence of influential outliers are
observed i the covariate space. Thus the existing outliers
detected by the residual plots are not so influential.

DIAGNOSTIC STATISTICS AND DIAGNOSTIC
PLOTS

In case of more than two covariates in the logistic
regression setting, the standardized residual plots can
highlight little regarding influential outliers. Tn such a
situation, some derived diagnostic statistics like change
in Pearson chi-square, change in deviance, change in
parameter estimates from basic building blocks and their
plots meluding proportional mfluence or bubble plots are
potential to detect outliers and influential cases. Several
measures of influence for logistic regression have been
suggested. These measures have been developed for the
purpose of identifying observations, which are influential
relative to the estimation of the logistic regression
coefficients (Midi et al., 2009). Such a useful diagnostic
statistic is one that examines the effect of deleting single
subject on the value of the estimated coefficients () and
the summary measures of fit, like Pearson
chi-square (¥°) statistic and deviance (D) statistic. Let,
%* denotes the Pearson chi-square statistic based on full

overall

data set and i’y denotes that statistic when case 1 is
deleted. Usmng one-step linear approximations given by
Pregibon (1981), it can be shown that the decrease m the
value of the Pearson chi-square statistic due to deletion

of the ith subject 1s:

(1)

The one-step linear approximation for change in
deviance when the ith case is deleted is as:

d[.2
=0 1-h

i

AD,=D-D (12)

The change m the value of the estimated coetfficients
1s analogous to the measure proposed by Cook (1977) for
linear regression It 1s obtamed as the standardized
difference between p and ﬁ(_l) , where these represent the
maximum likelihood estimates based on full data set and
excluding the ith case respectively and standardizing via
the estimated covariance matrix of . Thus, cne step linear
approximation is given as:

I

aB, = (é‘ éH)) (XWX)(S_ lé{—x)) = (

prh, _ sprth, (13
1-h,

“(-h,)
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Table 2: Pearson residuals, studentized residuals, hat diagonals, deviance
residuals, delta chi-square, delta deviance and delta beta statistics
for the BDHS-2004 data

Case

1) 2) (3) (G 5) 6) )]
i Pr; spry hy dr; AXiZ AD; Afﬂ.
1 -0.5896  -0.5903 0.0025 -0.7724 0.3485 0.5975 0.0009
2 -0.6374  -0.6378 0.0011 -0.8258 04068 06824 0.0005
3 0.5900 0.5907  0.0024 07729 03489 0.5982 0.0008
2210 -0.4872 -0.4879 0.0028 -0.6527 0.2381 04267 0.0007
2211 -0.5784  -0.5790 0.0023 -0.7597 0.3353 05779 0.0008
2212 2.5466 2.5494 00022 20065 6499 4.0401 0.0142

The derived influence statistics are listed mn Table 2.

These diagnostic statistics are conceptually quite

appealing, as they allow us to identify those cases that
are poorly fit (large values of Ay,* and AD,) and those that
have a great deal of influence on the values of the
estimated parameters (large values of Af,).

A number of different types of diagnostic plots have
been suggested to detect outliers and influential cases. Tt
is impractical to consider all possible suggested plots, so
we restrict our attention to a few of the more easily
obtained ones that are meaningful in logistic regression
analysis. These consist of plotting Ay’ AD, and Ap,
against the estimated logistic probability and plotting AD,
versus estimated logistic probability where the size of the
plotting symbol is proportional to the size of Af,, where
it is usually called proportional influence plot or bubble
plot. The derived diagnostic statistics Ay’ and AD plotted
against estimated logistic probability are shown in
Fig. 3a and b, respectively.

The shapes of the plots are similar and show
quadratic like curves. Cases that are poorly fit will
generally be represented by points falling in the top left or
top right comers of the plots. Assessment of this distance
15 partly based on numerical value and partly based on
visual impression. Since, the current fitted model contains
two continuous covariates, the number of covarnate
patterns 1s of the same order as sample size. Under
n-asymptotic the value of upper ninety-fifth percentile of
chi-square distribution with 1 degree of freedom is 3.84
and may provide some guidance as to whether an
observation is an outlier or influential point. Thus the
cases having numerical values larger than this cut-off
point which is based on Ay’ or AD can be considered as
outlying observations. It can be observed from Table 3
that 25 observations are detected as outliers and these
points fell at the top left corner of the plots displayed in
Fig. 3. The range of Ay’ is much larger than AD. This is a
property of Pearson versus deviance residuals. Figure 3¢
shows the plot of the derived influence statistic AP
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Fig. 3: Delta Chi-square, delta deviance, delta beta and proportional influence plots

Table 3: Outlying cases and their impact on influence
BDHS-2004 data

statistics  for

Original case No.

Sr (1) 2 (3) (€3] = @ O ®

No. i ¥ é‘ dr; spr hy AD; Ayl A[%‘

1 2052 1 0.0487 24583 44233 0.0020 6.0833 19.5652 0.0401
2 2047 1 0.0562 23995 41026 0.0022 5.7946 16.8314 0.0369
3 1607 1 0.0602 23708 39555 0.0020 5.6517 15.6461 0.0311
4 1441 1 0.0670 23252 37357 0.0020 5.4345 13.9554 0.0282
5 1684 1 0.0734 22853 35555 0.0020 5.2475 12.6415 0.0249
6 2170 1 0.0749 22768 3.5197 0.0026 5.2164 12.3882 0.0326
7 1419 1 0.0844 22237 3.2974 0.0019 4.9655 10.8726 0.0205
8 1399 1 0.0898 21958 3.1877 0.0020 4.8412 10.1616 0.0199
9 1679 1 0.0919 21850 3.1464 0.0018 4.7918 9.8999 0.0175
10 1793 1 0.0919 21850 3.1464 0.0018 4.7918 9.8999 0.0175
11 2153 1 01033 21306 29491 0.0022 4.5591 8.6969 0.0195
12 140 1 01065 21166 29034 0.0043 4.5162 84299 0.0362
13 918 1 0.1136 20858 27988 0.0037 4.3792 7.8333 (.0287
14 446 1 01152 20792 27771 0.0036 4.3511 7.7121 0.0282
15 667 1 01162 20747 27609 0.0024 43230 7.6225 0.0186
16 2169 1 01182 20667 27377 0.0043 43033 7.4949 0.0321
17 1830 1 0.1214 20535 26919 0.0016 4.2283 7.2462 0.0117
18 149 1 0.1251 20392 26485 0.0025 4.1754 7.0143 0.0174
19 2160 1 01283 20267 26103 0.0024 4.1238 6.8135 0.0163
20 2064 1 01294 20222 25960 0.0018 4.1015 6.7389 0.0121
21 1694 1 0.1318 20133 2.5695 0.0021 4.0671 6.6023 0.0139
22 2005 1 0.1318 20133 2.5695 0.0021 4.0671 6.6023 0.0139
23 545 0 0.8672 -2.0096 -2.5584 0.0020 4.0513 6.5453 0.0130
24 2212 1 01336 20065 25494 0.0022 4.0401 6.4996 0.0142
25 1989 1 0.1348 2.0020 2.5365 0.0024 4.0231 64337 0.0152
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against the estimated logistic probability. This plot is
known as influence plot. We observe that few points lie
somewhat away from the rest of the data. The values
themselves are not large enough, as all are less than 0.040.
The value of such influence statistic for an individual case
must be larger than 1 to have an effect on the estimated
coefficients. The largest values of AP are most likely
to occur when both Ay’ and leverage are at least
moderately large. However large values can also occur
when either component is large. This is the case in
influence plot.

The proportional influence plot or bubble plot 1s
exhibited in Fig. 3d. The actual influence of each case on
the estimated coefficient can be shown in this plot. This
plot allows us to ascertain the contributions of residual
and leverage to AR . The large circles in the top left corner
correspond to the largest value of AD. No such large
circles are visualized within 0.1 <&, <0.9 which indicates
insignificant contribution of leverage on the estimates,
because within the said range of estimated probability
leverage gives a value that may be thought of
distance.
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DISCUSSION AND CONCLUSION

Logistic regression 1s a special case of generalized
linear modeling, where the usual approach to outlier
detection 1s based on large sample normal approximations
for the deviance and studentized Pearson residuals. It 1s
umportant to note that deviance residuals are valuable tool
for identifying cases that are outlying with respect to
covariate space. Global tests of model adequacy use the
corresponding chi-squared approximations the
deviance and Pearson Statistics. Although normal
approximations to the deviance and studentized Pearson
residuals are often reasonable they are questionable for

for

logistic regression with sparse data and with small sample
(Hosmer and Lemeshow, 2000). Under the normality
assumption with sufficiently large sample, deviance
residuals or studentized Pearson residuals follow the
chi-square distribution with single degree of freedom.
Thus, the upper mnety-fifth percentile value of chi-square
distribution which is approximately 4 may be considered
as crude cut-off point to detect outlying cases. Crude
in the sense, that the distribution of the delta statistics is
unknown except under certain restrictive assumptions.
Examination of Fig. 3 and numerical values of column 6
and (7) presented in Table 3 identifies 25 ill-fitted cases
with outlymg values on the basis of diagnostics statistics
AD and Ay’ These cases contribute heavily to the
disagreement between the data and the predicted values
of the fitted model on the basis of observed response v;
and estimated logistic probability 8, shown at column 1
and 2 in Table 3. Detected outlying cases are one type of
observations that has a large value of AD and Ay’
correspond to the misclassified observations. The fitted
model predicts that it 1s unlikely for the subjects to
respond when in fact they do (8, is small and y; = 1), while
the opposite type of poor fit (&, is large and y;, = 0) also
present in the model.

On the other hand, high leverage values are bad. The
leverage value varies from O to 1. A leverage value of 1
means, the model i1s being forced or levered to fit the
corresponding case exactly. Thus the leverage can be
used to detect influential outliers. The leverage of any
given case may be compared to the average leverage
which equals (k+1)/n, where k is the number of covariates
in the model and n is the sample size. The average
leverage is inversely proportional to the size of the
sample. If the sample is sufficiently large, the leverage
value h; tends to be smaller. Cases are declared influential
having h;>2(k+1)/n (Belsley et al., 1980; Bagheri et al.,
2010). Two tumes of the average leverage of current study
15 approximately 0.0054. The leverage h; values listed at
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column 5 in Table 3 corresponding to the outlying cases
15 smaller than that cut-off pomt. Thus, it may be
concluded that the outlying cases are not so influential
due to sufficiently large sample.

The effect on the set of parameter estimates when
any specific observation 1s excluded can be computed
with the derived statistic based on the distance known as
Cook’s distance proposed by Cook (1977) in linear
regression. The analogous to the measure of one step
linear approximation proposed by Pregibon (1981)is ap in
logistic regression. Since an observation is called
influential if it has notable effect on parameter estimates,
Cook (1977) proposed that the influence diagnostic must
be larger than 1 for an individual case to have an effect on
the estimated coefficients. Influence diagnostic Ap
corresponding to the outlying cases 1s tabulated in
column (8) of Table 3. The values themselves are not
especially large with respect to 1 and suggest that none
of the outlying cases are influential in the fitting process.
One problem with the influence diagnostic AR is that it is
a summary measure of change over all coefficients in the
model simultanecusly. For this reason it is important to
examine the changes in the individual coefficients due to
specific cases identified as influential. Tn this regard,
change in individual coefficients can be obtained under
the option DiBeta and observed that all the changes are
very small relative to 1 (Sarkar et af., 2010).

Generally, deleting cases with the largest residuals or
more extreme values almost always inproves the fit of the
model. Since the outlying cases are not mfluential, it 1s
justified that there were no substantial changes in the
model fit or estimated parameters when we delete each
cases. The collective effect 1s also not substantial. So, we
decided the outlymg cases should be retamed in the
analysis.

In summary, scientists frequently have primary
interest in the outlying cases because they deviate from
the currently accepted model. Examination of these
outlying cases may provide important clues as to how the
model needs to be modified. Outlying cases may also lead
to the finding of other types of model madequacies such
as the omission of an important variable or the choice of
an incorrect functional form. The analysis of outlying
cases can frequently lead to valuable insights for
strengthening the model such that the outlying case is no
longer an outlier but is accounted for by the model.
Finally, it may be concluded that incase of small sample
the influential outliers can be detected easily by the
leverage value but as sample size increases, the detected
outliers do not play any significant mfluence on the
parameter estimates.
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