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Abstract: The study of problems and inconveniences appearing in the Object-oriented (OO) implementation
of continuous simulation systems based m Differential-algebraic Equations (DAE) 1s presented. It was found
that the numerical treatment of the equations is crucial to find a design compatible with OO programming
practices which lead naturally to implicit schemes. The family of Backward Differential Formulas (BDF) was
found particularly appropriate to achieve high levels of software flexibility and reusability. A series of numerical
studies were carried out comparing numerical performances with software quality metrics. It was found that BDF
implementations improve substantially the software quality, although the computer costs also increase
significatively which ultimately calls for pondering the importance of each software characteristic
(1.e., modifiability-extensibility vs. calculation time). The equilibrium of this balance 1s determined by the size
of the problem to solve. A utility function is proposed which can be used to determine the optunum choice.
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INTRODUCTION

Object Oriented Programming (OOP) supported by
proper framework architectures provide features that
might significantly improve the design, implementation
and mamtenance of large codes (Meyer, 2000,
Yang, 2008). This methodology has reached many
branches of applied computation, such as data bases,
software agents, expert systems, computer graphics,
communications support, among others (Adetunde, 2009).

Every computer code has two fundamental elements:
data and functions. Data are the carriers of the digital
information by means of a proper codification, whereas
functions (which actually also should be represented
through a codification) are procedures responsible for
data modifications. In the procedural programming
methodology the programs are divided in modules defined
by the functions (subroutines, procedures, functions,
etc.). In turn, OOP changes radically the principle of
program structure: the data become the fundamental
elements, whereas functions (called methods) are defined
and 1mplemented according to the modulanzation
naturally suggested by the data. Tn this way, each
program module (called object) is responsible for their
own data which can only be modified by ther own
methods and can only be “observed” by the other objects
through communication protocols. In addition OQOP
introduces other modularity concepts (e.g., abstraction,

inheritance and polymorphism) that help the programmer
i structuring  the  systems emsuring  the
extensibility and modifiability.

Most of the software tools currently available for
scientific computation are still structured based in
function-driven modularizations, requiring substantial
additional work and often being practically impossible to
maintain and extend the systems, even for minor changes.
The main reason of this is that the scientific software 1s
still implemented using procedural languages (e.g., n
FORTRAN) or OOP languages but following essentially
procedural designs. Typical symptoms of this land of
troubles is that often large scale numerical problems are
performed employing several tools generating partial
calculations which afterward are processed using other
applications in order to obtain the final results. There are
some interesting coding efforts of complex numerical
methods applymg OOP (Lengtangen and Munthe, 2001,
Machiels and Deville, 1997; Liu et ai., 1996; Kees and
Miller, 1999). Most of them conclude that the roll played
by the mathematical approach to each particular problem
1s crucial to achieve good software designs.

Continuous  simulation calls  for

future

interesting
requirements from the programming language and the
modeling environment (Agel, 2006; Mohamed ef al., 2008).
The diversity of the simulated phenomena, often requiring
interdisciplinary  approaches, leads to increasingly
complex designs covering progressively wider scopes.
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The latter clashes with the demands of simplifications,
modifications and multidimensional structure, not only
from the point of view of the construction of models with
structured methodologies (e.g., blocks) but also i the
numerical solution of the underlying equations. Formal
programming languages have the advantage of univocacy
which is a problem of some block diagrams or textual
descriptions (Hakman and Groth, 1999). For example, the
mathematical expression z = y/3 + 2x, will always generate
an executable code yieldmg the same results
independently of the code generating tool. However,
classical formal languages usually lead to structural,
conceptual and topological information loss in the
equation mass. In tum, block diagrams preserve the
structural information but often darken the mathematical
representation, hiding the local behavior and the
conceptual information.

Nevertheless simulation software defimitely goes
toward OOP languages and Object Diagram Editors
(Otter and Elmqvist, 1995), for they have demonstrated
wider scopes and represents more naturally the physical
reality. Therefore the application of OOP to continuous
simulation problems by means of numerical solvers of
differential equations combmes the structural and
mathematical information, without hiding one from the
other.

In this article, a study of the problems arising in the
application of OOP in continuous modeling and
simulation by means of systems of combined Differential
and Algebraic Equations (DAE) 1s presented. The
purpose of the study is to assess an appropriate OO
design for solving DAE mutial-value problems m a
generalized approach, in order to facilitate the taslk of the
modeler that often involves a process of progressive
sophistication, modifying, extending and
eliminating equations and system variables. It will be
shown that in this type of problems involving a strong
bias toward functionality relative to data structures it 1s
important to start from mathematical approaches
compatible with OO methodology. In the case of
contimious simulation this leads naturally to implicit

meoedel

numerical schemes. Within this type of schemes, the
family of Backward Differentiation Formulas (BDF)
appears as a solid candidate compatible with software
flexibility and modifiability requirements.

CONTINUOUS SIMULATION

Generally speaking, a continuous simulation is a
numerical representation of temporal-evolving entities
based in synchronized processes, therefore time is a
single global variable serving as reference of all other
variables. This concept which can look obvious to those

familiarized to numerical simulation through differential
equations 1s not the only possibility to simulate dynamical
systems (Bhatti et al., 2006). There exists also the concept
of local time, used 1n the so called discrete simulation,
where each thread of the general process is associated to
a different time line, all of which should be synchromized
by means of certain defined criteria.

Physical systems mvolving time dependent variables
are generally represented within continuous simulation
frameworks by means of ordinary differential equations.
Problems involving additionally the space as independent
variable are more complex and should be represented with
partial differential equations. The target of the present
work 1z the first class of problems ie, a single
independent variable although some of the conclusions
can support the treatment of partial differential equations.

Let us consider for example a simple system of two
tanks with two pumps transferring water between them
(Fig. 1).

The dynamics of this system can be described as a
first approximation with two differential equations for the
water volumes and two algebraic equations for the flow
rates:

i=q—q
V;=q;-q (1)
9 =P (Vref ’Vl)

qQz =P (vref - Vz)

where a simple proportional control of the water levels 1s
assumed, aiming to keep a reference volume, in both
tanks.

The usual procedure to numerically solve such
problem is to apply a classical integration scheme
(1.e., Runge-Kutta), for the sake of which the set of
equations is written as:

F-f®) (2)

where, 1s the so called state vector. In this case:

R={v,v,)
f1 = (p1 - p])vxef “RpVi TRV, (3)
=P —PVer t PV — P2V,

v

Fig. 1. Tanks of regulation by pumps
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During regular modeling processes, the equations
become more and more complicated as additional terms
and variables are mntroduced mn order to represent more
details of the reality. The specialist task 1s to experiment
with the successive sophistications following a series of
hypotheses and comparisons against reality. The
following are a list of typical modifications usually
encountered during the development of dynamical models
which complicate the modeler job:

Change a constant by a function of the state variables:
During the development of differential dynamical models,
itis usual to extend a system introducing dependencies of
the control parameters on the state variables. This
modification n tum can increase programining
complications when the data structure is too nigid. For
example, in the base case the model can be extended by
postulating a volume dependence of the control
parameters, p; (i.e., non-linear control). If change
generality 1s intended, instead of changing the flow rate
equations one should change the declaration of from
constant to auxihiary variable and then include an
additional line with the volume function. Moreover,
depending on the way each data type (constant, auxiliary
variable, state variable) is communicated, consistency
should also be ensured during the calculations in the data
transfer between program modules.

Change a constant by a state variable: This modification
is similar to the precedent but here a differential equation
is added to account for the variation of the parameter. The
mconveniences are analogous than before.

Replace a differential equation by an algebraic equation:
This change 1s a very common transformation when
working with balance equations of the type:

E= 4 — ¢ (4)

where the increase and decrease rates of the variable,
Ed,.. v, are functions of the state variables.

If the time constant of this equation is much smaller
than the other system equations, a quasi-static
approximation can be written by zeroing the temporal
derivative, that 1s:

b, = dos (3)

which is an algebraic equation. Modifications of this type
change the order of the system of equations, affecting
among other things the time step control. However, the
main inconverences 1s not this but the fact that the entire
set of equations should be rewritten all over agam to
produce the appropriate form required by explicit

schemes, that is % =f(%). In effect, after Eq. 4 is eliminated
the variable E 1s no longer a state variable, although 1t will
continue to be called to calculate (%), an therefore it
should be calculated from the auxiliary algebraic
equations including the new one. These annoyances
imply reprogramming of the model, with the additional
charge of associated implementation errors.

Replace an algebraic equation by a differential equation:
This change 1s the transformation opposite to the
precedent. In this case also inconveniences in the time
step control and the reimplementation can appear.

Add a term depending on a temporal derivative: This
change typically appears when a derivative control term
1s included. For example n the level control case:

Q=P (Vxef
q: =P (Vxef

v ) —-d (6)

*Vz) —d;vy

This kind of meodification 18 complicated for it
requires rewriting the systemn as % =f(%) which imply as in
the case 3 the reprogramming of the model.

Generate a system of N instances: This type of change 1s
usual in the modeling of processes with a large mumber of
similar components. Typical examples are the chemical
processes, piping transport and population models.
Actually the spatial discretization of partial differential
equations generally leads to sets of many similar ordinary
differential equations coupled (cells). In the level control
case, the extension to N instances is direct, yielding:

V,=q,—q, q_l:pl(vref_vl)
V] =~ Qi 4 =P (Vref - vi) (7)
Vy =dy — 9, Iy =Py (me—VN)

In such cases it is very useful for the modeler to
make use of the mheritance property which enables
encapsulate the common parts of the subsystems, saving
implementation work. Clearly the inconveniences
associated with all the preceding modifications increase
by a factor N with this extension.

SYSTEMS OF DIFFERENTIAL AND ALGEBRAIC
EQUATIONS (DAE)

The numerical solution of imitial-valued problems
modeled by DAE attracted the interest of the numerical
community form the last 30 years (Brenan et al., 1996).
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Many engineering and scientific problems can be
naturally modeled with DAE, yielding mostly to balance
equations of the general form:

4

&)

a3
pasy
B
et}
=z
I
(=]

together with a set of auxiliary algebraic equations
representing restrictions or constitutive relations:

G.5)=0 )

In order to ensure that real nitial-valued problems
can be appropriately represented, the specific form of
Eq. 8 and 9 should ensure that the temporal derivatives
are uniquely determined for every valid set of values of
and. In such cases one can always transform a DAE m a
system of Ordinary Differential Equations (ODE) of the

type:
F=f) (10)

which can be solved with some of the classical numerical
solver schemes (Runge-Kutta, etc.).

The actual transformation of a DAFE to the form given
by Eq. 10 can be troublesome for various reasons. For
instance, DAE often increase their stiffness when they are
rewritten as ODE. However, even 1if this were not the case,
the interest in keeping the DAE structure during the
numerical calculation arises from the search of efficient
software designs, particularly from the point of view of
the modeler.

The general objective of the study can be therefore
written as a totally implicit non-linear function of the form:

PR =0 (1)

which are often called residual functions and are taken as
a combination of differential and algebraic equations. An
Imitial-valued Problem (IVP) consists of determining the
temporal functions X that satisfy Eq. 11 given the
values %, int=0.

There are a variety of numerical methods for solving
IVP of DAE which can be classified in three classes:
single-step, multistep and extrapolation methods. The
efficiency of each type of approximation depends on the
specific problem. Tn what follows, the software-design
aspects of a subclass of multistep method, BDF
(Backward Difference Formulas) (Gear, 1971), having
interesting flexibility properties, will be studied.

Generally speaking, BDF is based in transforming the
DAE m a purely algebraic system by means of numerical

approximations. In order to do that let us define a
transformation replacing £ and % in the residual Eq. 11 by
functions  X(z_.%_.% ,..0 and DX(E_%_.%_,..),
representing multistep estunators of the state vector and
its derivatives (by convention ¥, =%{t,)). For example, a
semi-implicit 2-step scheme would be:

S- X, t%,
2 (12)
DX: XX

This operation defines a set of estimated residuals:

GiR,. %, %, ) =0 (13)
Equation 13 are a set of algebraic equations whose
unknown variables are the state vector in the new time, X.
which 1s the calculated knowing its past history.
Within the described general procedure, different

alternatives exist according to the specification of:

s The formulas ¥ and DX

s The control strategy of the time step

¢ The numerical method for finding the roots of Eq. 13

¢ The data structure and classes to handle the different
steps of the general algorithm

The abstract BDF method presented previously
yields to an advantageous calculation scheme for the
model developments, mamly because it solves naturally
most of the problems mtroduced by the typical
meodifications appearing during the modeling of system
dynamics. Actually, the basic functional form F(x,%)=0 is
invariant under any of the mentioned model changes
mentioned in the previous section. From this perspective,
one is tempted to say that implicit schemes are a “natural
mathematics” for OO0, the “natural” objects being the
functions F(x,%). The implementation of the mumerical
solution can be easily encapsulated, leading the modeler
to “see” a solver “black box” m which he or she
intreduces, adds, changes, eliminates, functions F(%,%),
without worrying about rewriting the equations or data
commurication problems.

ANALYSIS AND OO DESIGN OF DAE SOLVERS

From the point of view of programming, traditional
subroutine libraries
equations typically present two main weaknesses: rigid
interfaces and complexity exponential with the variety of
equations to solve. The first weakness affect the users for

available to solve differential
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it is relatively difficult to elaborate models using these
libraries, the modeler assuming a double roll: to represent
its model mathematically and to adapt the resulting
representation to the required mnterface. The second
problem affects the library developers, since the mumber
of programming and maintenance tasks explode.

The mentioned troubles are consequence of deficient
abstractions n the design phases. A first problem is that
in order to optimize the numerical performance the access
to subroutine is often forced to rigid data structures
which require the implementation of new subroutines
when any of the data structures 1s changed during the
modeling process. An addition inconvenience is that
these subroutines often include input variables that
describe the data structure.

Although better implementations of numerical
methods can be produced using OO programming, one
should remind that there always will be a penalty on the
performance. Therefore, since numerical simulation often
requires complex and highly efficient codes, the
performance of high level programming languages will
compete with the design improvements achieved from
their application. In this section, an analysis of these
1ssues and the results obtained during the design and
implementation of a general DAE solver tool for
continuous simulation are presented.

Analysis: Essentially a DAE 1s a set of scalar functions
F={F (A, B),F, (A B), .. F,(A B, where A is a set of
N functions of the temporal coordinate (real and
mndependent) and B are the comresponding temporal
derivatives of A. The methodology BDF consists of
transforming the set F in a system of N algebraic
equations G {G, ([X]), G, ([X]), ..., Gy ([X]) = 0, where [X]
is a string of N elements representing the values of the
functions A evaluated at current time. The transformation
F - G is performed assigning to each A and B element an
multistep estimator function f ([[X]]) , where [[X]]
represents a hist of strings [X] increasing its length as time
advance (i.e., the elements of the list [X] are the values of
A calculated at each time step).

Design: The purpose of the system to umplement is the
numerical solution of DAE sets, trying to maintain
flexibility to support appropriately the development of
mathematical models for continuous simulation. Two
methods will be implemented and compared: explicit
fourth-order Runge-Kutta and generalized BDF.
Runge-Kutta methods and BDF method were implemented
to solve the explicit and implicit schemes respectively. In
what follows, the following design aspects will be omitted
for the sake of clanty: constructors, destructors and

methods of consultation of attributes. The syntax for
attributes declaration, methods and pseudocodes is a
relaxed syntax C++ but the schemes can be implemented
1in any OOP technology (e.g., JAVA, Small talk). If using
another OOP technology to implement the proposed
schemes, the comparative results will be similar.

Classes for the implementation of implicit schemes
DAE system: This class defines generically DAE sets of
the type given by Eq. 11. Dynamic matrices are used to
represent the dependent variables ¥ and %, the columns
being associated to the system variables and the rows
representing the discretized time coordinate (Fig. 2). The
functions F are declared on the method “Calculat-F()”
which receives through parameter the estimation of X and
%, returning the corresponding values of F. Since a
single problem can imply several systems of equations
linked through the variables, an association relation 0..*
was included between objects of the same class.
Moreover, the following methods were defined to
complete the functionality of this class:

»  “Imtial-guess()™: used to obtain the seed for the
solver of G roots, Xg..(D

s “Posible-solution()”: stores the rocts of G, taken as
a possible solution of the current state vector which
should be tested for consistency before bemng
accepted

s “Update-history()”: accept a possible solution that
pass the consistency test

»  “Retrieve-history()”: retrieve the past values of the
state vector

Controller: This class represents the master control
responsible for synchronizing the entire calculation
process. Controller manages the current time and the time
step. The method “Advance()” is used to advance the
system a time step beginning from the present time.
During the execution of “Advance()” the last calculated
values of the state vector 1s stored in the history list and
the cwrrent time step is calculated calling the method
“Calculate-New-DT()” (Fig. 3).

w o P P
HOHCH -
. IHHHH

2R 2R 2

Fig. 2: Temporary dynamic representation of the variables
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Posible_solution() : void
Retrieve_historico() : double**
Update history() : void

T T

T

DAE system Controller Estimator
- dxdt: double** - Dt: double - Dt: double
- x:double** - tcurrent: double 1A X_estimate: double
Calculate_F(): double* 1# 1|* Advance(): double + Estimate: void
Initial Guess(): double* - Calculate_new_DT(): double

Set_estimators(): void
Verify_time-step() : boolean

1

[

1

Root finder Implict solver Constructor Estimator X Estimator
: - implicit system m DXDT
+ Find_roots() : void 1.1|+ Calculate() : void -
+ G() : double* ;
1..*
Fig. 3: Class diagram for implicit schemes
ODE system Controller Estimator
- x: double** - DT: double - DT: double

Calculate_F(): double*

- t-current: double -

X_estimate: double*

+

+ Initial_Guess(): double* 1.%
+ Posible_solution() : void

+ Retrieve_historico() : double**
+ Update history() : void

—

+ Advance(): double

+ Calculate_new_DT(): double
+ Set_estimators(): void

- Verify time-step() : boolean

+ Estimate: void

1

1

Integration-server Implict solver

Constructor Estimator X

+ Calculate_integration() :

! + Calculate() : void
void

implicit system
+ H() : double**

Fig. 4: Class diagram for explicit scheme

Estimator: This is an abstract class defining generically
relations of the variables of F with the state vector and
the current unknown state. The abstraction guarantees
the possibility of user implementation as well as the use
of libraries of estimators. The current time step is included
as class property. The subclasses “Estimator DXDT” and
“Estimator X” define the relation of the temporal
derivative and the state vector with the past values of the
state vector and the corresponding unknown cuwrrent
value.

Constructor implicit system: This is another subclass of
“Estimator” defining the method “G()” which represent
the algebraic equations associated to the residual
functions F.

Root finder: This is an abstract class defining generically
the numerical methods that solve the roots of the
algebraic equation G=0. All class that inherits from
“Root  Finder” should implement the method
“Find-Roots()” having the algebraic function “G()” and
the guess values X,.. as input parameters and returning
the root vector ...

TImplicit solver: This class constructs the sequence
required to transform the user model equations to an

implicit algebraic problem. The method “Calculate()”
recelve as a parameter an mstance of the class “DAE
System”.

Classes for the implementation of explicit schemes: Most
of the classes designed for explicit schemes are similar to
those corresponding to the implicit schemes (Fig. 4). The
main differences are the following:

ODE system: This class specifies generically systems of
ordinary differential equations defined by Eq. 10. The
functions of the derivatives, f and the auxiliary algebraic
equations are declared in the method “Calculate DXDT()”
which receives as input the values of ¥ and delivers the
values of %.

Constructor explicit system: This is a subclass of
“Estimator” defining the method “H()” that represents the
algebraic equations associated to the functions f.

Explicit solver: This class builds the calculation sequence
of the explicit scheme which is performed through the
method “Calculate()” that receives as input an instance of
the class “Explicit System™.
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RESULTS

Numerical study of the model tanks: Consider a water
level control of a series of tanks (Fig. 1). This case 1s
appropriate to analyze the advantages of implementing
BDF schemes m a modeling process, starting from a
simple base case (proportional control) and progressively
rising the model sophistication following a circular
process of trial and error. Two schemes were implemented
following the OO paradigm, BDF and explicit
Runge-Kutta. Using both implementations, different
modifications of the model were applied, assessing in
each case the software flexibility.

The importance of each modification was
characterized by the following parameters:

¢ Number of equations affected by a modification (rl)
*  Number of equations that should be added to the
model after applying the required algebraic steps (12)

The software adaptability to each modification was
characterized by the following mdicators:

*  Number of additional code lines required (r3)
¢ Intermediate algebraic steps required to implement a
modification to the model (r4)

A series of two tanks with classical proportional level
control was taken as the base case. The dynamics of this
system can be described by two differential equations for
each water volume and two algebraic equations for the
flow rates:

Vi =q,-q,
Vv,=q; -4 (14)
4 =n (vref 7V1)

q; =P; (Ve = V)

where, v 1s the reference volume.

The described base model was extended to series of
3 and 4 tanks and the following modifications were
imposed to each extension:

Table 1: Study of the model tanks - Initial conditions and values of parameters

s TInclude derivative control terms

¢+ Introduce a dependence of the control coefficients
on the state variables

¢  Transform the algebraic equations in differential
equations

The mitial conditions and the values of the constant
parameters in each particular case are detailed n Table 1.
The indicators r; were calculated in each case, are detailed
in Table 2. For example, include one derivative control
term &V, (case a in Table 1) for tank 1 in the explicit
scheme, the number of equations affected by a
modification 1s 11 =2 (% =49, -4 and q, = p, (v,.+v,), the
number of equations that should be added to the model
after applying the required algebraic steps is 12 = 0
(replace the original equations), the number of additional
code lines required is 13 = 2 (declaration and initialization
of &) and the intermediate algebraic steps required to
implement a modification to the model r4 = 3 (steps to
obtain the expression of Vi ).

The general observation 1s that the BDF
implementation reduces substantially the number of code
lines and the number of intermediate algebraic steps.
However, similarly to the previous cases, this advantage
increase the computer costs which calls for pondering the
importance of characteristic (i.e.,
modifiability-extensibility vs., calculation time). The
equilibrium of this balance is determined by the size of the
problem to solve. If the number of equations of the model

each software

18 lmgh modifiability and extensibility are the preponderant
factors, whereas i1 models with few equations the gain in
software implementation does not match the decrease in
numerical performance.

To analyze the mentioned balance two metrics are
defined that represent the competition between both
elements of quality, software metric, S and numerical
metric, C:

S = Number of code lines plus number of algebraic
steps (13 +14)
C = Real time/calculation time

Modifications Equations

Initial conditions

a) Include derivative control terms

b) Introduce a dependence of the control
coefficients on the state variables B v ) =k (v 4ot v,)
8(v,., v )=c(v +..+v,)
Lg +Kqa[=2p,;

Ap, ;s =T(v) g% ) +Apy,
flv) =p. (Ve = vi) 804 =8V,
Aps; = APs (%) ¥, =G, — Qe

¢) Transtform the algebraic equations
in differential equations

Q=P (Ve — %) — BV, ¥, =, —
g =pi{v — V) 8¥% v =q,—q,

Vor =10,p, = 0.2,p, = 0.1, § = 0.5,8, = 0.5, ,(0)=10.01,v,(0)=10

v, =10k, =50,k, =100

¢ =20,c, =20,v, =10.01 v, =10
v, =10,p,=0.2,p,=0.1

8 =0.5,8,=05K, =1
K,=11 =2,T,=2
Apy =0.05,v, =10.01,v, =10
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Table 2: Characterization parameters of the proposed modifications, software metric § and numerical metric C

BDFG! RK4*
#Tanks Modifications  rl r2 r3 r4 8 c rl r2 r3 r4 8 c
1 a) 2 0 2 0 2 0.196 2 0 2 3 5 0.005
b) 4 2 4 o] 4 0.198 4 2 4 3 7 0.006
c) 4] 3 6 0 4] 0.21 6 3 4] 4 10 0.007
2 a) 4 0 4 o] 4 0.198 4 0 4 4] 10 0.006
b) 8 4 8 0 8 0.212 8 4 8 4] 14 0.007
c) 12 6 12 o] 12 0.213 12 4] 12 8 20 0.007
3 a) 4] 0 6 0 4] 0.196 6 0 4] 9 15 0.006
b) 12 6 12 o] 12 0.208 12 4] 12 9 21 0.008
c) 18 9 18 0 18 0.21 18 9 18 12 30 0.008
4 a) 8 0 8 o] 8 0.212 8 0 8 12 20 0.007
b) 15 8 16 0 15 0.211 16 8 15 12 28 0.008
c) 24 12 24 o] 24 0.214 24 12 24 16 40 0.010
20 a) 20 0 20 0 20 0.198 20 0 20 30 50 0.011
b) 40 20 40 0 40 0.23 40 20 40 30 70 0.016
<) a0 30 60 1] a0 0.421 60 30 a0 40 100 0.021
'BDF: Backsword diffential formulas, “RI4: Runge-kutta 4 order under score
Table 2 shows the calculated values of S and C for
each modification of the tank-series problem. Figure 5 000 o
shows the dependence of S and C with the number of °° o
equations which can be taleen as the model size. Tt can be °
seen that C 1s lower in the BDF implementation, whereas 104
the opposite occurs with S. C-implicit)/C_explicit
The conclusion is that the optimum scheme will
ultimately depend on the relative importance that the
modeler assigns to the metrics C and 3. This type of
decision is usually solved by means of a utility function !
. . . e%e 0 o0 o U i
representing T.he sub_!ectlve usefulness perceived by. the R S implicity'S_explicit
users for a given pair (C, S). In the present analysis, a
utility function similar to those used in microeconomy 1is v o o B

proposed, that is (Henderson and Quandt, 1980):
U =exp (-5-aC) (15)

where, « represents the relative importance of the
numerical performance respect to the software flexibility.
The best alternative is determined by the scheme having
the higher value of U.

Figure 6 shows the optimum decision map calculated
for the modeling of the series of tanks, m the plane
defined by the parameter ¢ and the number of equations.
It can be seen that for & values higher than 10 explicit
Runge-Kutta implementations are more convenient for
systems of few equations, whereas BDF schemes are
better when the number of equations exceed a certain
threshold. The critical number of equations separating
both alternatives is lower for lower values of «. This
means that as the importance software implementation
quality increase, the minimum system size for convenience
of mmplicit BDF implementations decrease. For o values
lower than 10, BDF implementations is always
recommended.

Similarly than in economy, the value of ¢ in particular
cases can be estimated by means of the relative impact of

No. of equations

Fig. 5: Relations between software metric, S and numerical
metric, C

100 4

80
explicit

60

40 I
implicit

20

0 T T T T T T T
0 10 20 30 40 50 60

No. of equations

Fig. 6: Optunum decision map calculated for the modeling
of the series of tanks

the factors C ¥ S on the utility. In the software context, ¢
can be mterpreted as the number of S umits producing the
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same impact than a C unit on the development work which
depends on the developer skills and what type of work
requires more efforts and resources.

Implementation of the core model of CAREM NPP: The
CAREM Nuclear Power Plant (NPP) has an integrated
reactor, the whole high-energy primary system, core,
steam generators, primary coolant and steam dome is
contained inside a single pressure vessel (Fig. 7). The
flow rate in the reactor primary system is achieved by
natural circulation. The driving forces obtained by the
differences in the density along the circuit are balanced
by friction and produce losses, resulting a flow rate in the
core that allows for sufficient thermal margm to critical
phenomena.

Mathematically, the core model is represented by
differential algebraic equations, corresponding to the
mass and energy. All equations are expressed with implicit
DAFE's.

E = ap L (b, +h)/2+ W, (h, ~h.)/2+ qAl ~ E{’
F,=Ap, 1, (hy;+ 3h,V4-E

E:Mm4w+@QHMm—mthmfAum+my}£9

F, = Ap, 1, (3h;+h,)/4-E,
F;=-D,, -D,.-D;-D,, DIV
I =gm/A-D,
E =p.u; —puj D

pa

k= chpeui + k1cplul2 - Dpf

E =c, (M/Auf +20u, (L~ (1, + L)) {p L~ M/A)/(p, /o, ~ 1)+

& (Q(L - (4 +1))/(-D) (b /e - DL~ (L +L))/2+
/e (M/A_ Py (11 +1, ))) D

Fio = uM/A +Q (L-(1, + L) (p; L-M/A(pi/p-1 )T (16)
Fuo=u, +Q (L, + 1)),
Fi, = lal + v/
Fiy = W-W,-M®

Fu=AL- 0+ 1LY (p-log (p/p)/1/p-1/p ) + Adly +1,)-M

Fig. 7: CAREM nuclear power plant-single pressure

vessel
Fis = pr-pe
Fis = p. Au-W,
Fi»=p, Au-W,

Fi; = qAL vi/W, vy, -N,
Fio=v(0.0010941477378 + P (3.6380424746E-11)
Iy = v,-(0.042764801477 P-2.31776361958E-09))

Fy = vevit v
F,, = he(96777.46999 + P (0.043951985226))

Fu: = h-(1939710.988-P (0.06241920591))
Fu=prlive

In Fig. 8 it can see the classes implemented for this
example. The core model has 6 differential equations and
18 algebraic equations, where several of them are
nonlinear. The update process through the implicit
scheme is very simple because the changes are local. On

the other hand, these equations implemented with the
explicit scheme can be difficult, especially m some
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DAE System
- x: double**

+ Calculate_F():double*
+ Intial Guess():double*

Estimator

- DT: double
-X_Estimate: double*

+Estimate(): void

+Possible_Solution ():Vid A \
[FRetrieve Historico ():Double**
+Update_History ():void Estimator Estimator x
DXDT
O'I'j I I+ Estimate():void
Core model BDFG

I+ Calculate F():double* It Estimate():void

Fig. 8: Class diagram of core model

equations that may have more derivative terms. A
minimum change to a component linked to another may
cause changes for all components of the reactor. Also,
there are algebraic equations which the conversion to
ODE’s can be causing a double error of approximation.

CONCLUSIONS

The application of OO designs to improve the
development of continuous simulation systems was
studied. The analysis has tackled the difficulties and
complications that affect the work of modelers and library
developers, either about the numerical performance or the
software implementation.

A class structure providing rapid implementations of
continuous dynamic simulation problems was presented,
emphasizing the natural representation by means of DAE
systems. This approach leads naturally to implicit
numerical schemes among which BDF was found
compatible with OOP. However, improvements in software
flexibility and reusability introduce nmumerical penalties
that should be taken into account in the general balance
between flexibility and performance.

It was demonstrated than a metric established in
some cases to determine the most convenient scheme,
explicit or implicit, regarding the user requirements. The
concepts of inherited and encapsulation play an important
roll, producing programs much more modular than the
procedural versions, thus promoting code reusability,
extensibility and maintainability.

A recent research direction on modeling and
simulation 1s to use Model Based Designs (MBD)
(Bhatta and Goel, 1996) which helps to accomplish the
type of design modifications mentioned with relatively
little overhead compared to procedural methodologies.
MBD 1s a mathematical and visual method of addressing
the problems associated with desigming complex control

systems and is being used successfully in many motion
control, industrial equipment, aerospace and automotive
applications. However highly coupled non-linear systems
{(e.g., nuclear reactor neutronics, thermohydraulics and
control dynamics) still can involve a strong overhead of
design and testing, or increase  the
computational cost associated to the precision
requirements of some engineering problems. Indeed, the
use of DAE based models is complementary to MBD and
in fact they can be implemented in MBD tools.

otherwise
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