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Abstract: In this study, nonlinearity in earthquake is investigated for the propagating seismic waves instead
of linear waves. Assuming the presence of nonlinear effects mn this earthquake modeling, the Rayleigh waves
are formed by meorporating the nonlinear sine-Gordon equation nto the linear asymptotic governing equations
for finding similarity reduction. The existence of reduction to the modified asymptotic governing equations is
demonstrated and is consequently shown to give both the linear and nonlinear Rayleigh waves solutions. The
related velocity and amplitude dependent Rayleigh waves are obtained and also the nonlinear form of Rayleigh
waves. Multiple nonlinear surface displacements are identified. These nonlinear waves are shown to leave the

trails of crucial surface displacements.
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INTRODUCTION

Earthquake modelling 1s important in rescue scenario.
Understanding the displacements’ profiles, the rescue
activities are more manageable. Vafaeinezhad et al. (2009)
developed a new approach for modeling spatio-temporal
events in an earthquake rescue scenario. However,
undestanding the seismic waves profiles are more
umportant since the propagating of the seismic waves are
more crucial m developing disastrous surface
displacments. Balideh et al. (2009) studied the wave
propagation in elastic environments analytically and
numerically. Whilst, the linear and nonlinear seismic
waves will be studied in this study for the wave
propagation.

The vyear 1885 marked the glorious year for
earthquake studies whereby seismic Rayleigh waves were
named after Lord Rayleigh. Lord Rayleigh realized the key
part that surface elastic waves play in creating the earth
surface displacement. The quest for exact Rayleigh waves
was clearly begun then and under suitable conditions as
discussed by Ben and An (1981), depth dependent
Rayleigh waves are approximated by the dimensionless
wave equation:
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where, subscript z is used to denote the depth of the
medium with mass density p, while p and A are the Lamb
parameters, a,, a, are the unit vectors. The corresponding
displacement 1s:
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where, A and B are the amplitudes of the P waves and S
waves, ¢ 15 the velocity and k 1s the wave number. By
utilizing the boundary conditions for P waves and S
waves, the Rayleigh wave’s dependency on its velocities
are obtained as:
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such that ¢, P are the velocities for P and S waves,
respectively. Equation 1.3 has now become the reference
model for Rayleigh waves in earthquake modelling
(Pujol, 2003).

Fan (2004) has successfully mtroduced, without
loss of generality, a method of deriving Eq. 1.3 through
asymptotic ~ governing  equations. The  damping
mechanism is introduced to the governing equations and,
in particular, one notes that a variety of outcomes are
possible depending upon one’s view of the task at hand.
In this paper, the method introduced by Fan (2004) for
deriving the Rayleigh waves is extended for the velocity
and amplitude such that these waves can then be shown
for nonlinearity.

(1.3)

GOVERNING EQUATIONS AND DISCUSSIONS

Fan (2004) gave a comprehensive account of the
dimensionless governing equations for dynamic rupture
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with damping. The idea of damping is then introduced and
used effectively with the asymptotic govermng equations
and consequently the surface seismic Rayleigh waves
with damping in dimensionless form were derived. Fan
(2004) generated his asymptotic governing equation
which consists of the damping factor and the fact that the
governing equations can be deduced to Rayleigh
waves similar to Eq. 1.3. In this study, the condition of
Cauchy-Riemam 1s introduced to Fan (2004) ways of
deriving Rayleigh waves Eq. 1.3. The horizontal and
vertical components of the Rayleigh waves are introduced
according to the stress components. These would give
the condition of Cauchy-Riemann before the Hq. 1.3 is
derived soon after.

The implementation of damping method starts by
writing the functions of P and S waves asymptotically and
this yields:

0=0, +2;0, + 8.0, + .. (2.1a)

W=y + AL+ Ay, (2.1b)

If a trial form of complex analytic fimction 1s
f{z) = P+, the necessary condition that f(x) is analytic is
that the Cauchy-Riemann equations be satisfied:

u_ w u ow
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The two potential functions for the Rayleigh waves
which flow in the medium are:
Stream function

UrIX =W, Urlz =-u (233)

Velocity function

b.=-u, o,=-w (2.3b)
The dimensionless asymptotic governing equation 1s

similar to:
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subject to the Cauchy-Riemann conditions Eq. 2.2 and
which yield:

(2.5)
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Fig. 1: Linear and nonlinear damping

[%+%1 —0 (2.6)
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The linear and nonlinear damping are illustrated in
Fig. 1. For tlus purposes, it is sufficient to look for
solutions of Eq. 2.4 in the form of:
[ot-oux)

(2.7

dy(xz.t)= f(z)e‘[‘“'”"), Wy (xzt)=g(z)e'
where, 0 =, c. Solving Eq. 2.4 are entirely algorithmic;
it often mvolves a large amount of tedious algebra and
auxiliary calculations which can become virtually
unmanageable if attempted for higher orders. Our
objective is to reduce Eq. 2.4 into a single equation by
heuristically introduce instead a sine component in order
to merge Eq. 2.4 and with some amendments to give the
amplitude dependent characteristic. Using this, we mean
solutions of the partial differential equation for Eq. 2.4 will
only be shown here.

Substituting Eq. 2.7 into 2.4 yields:

&f(z)

—k2)=0 (2.8)
ozt :

—(OL2 —ia, —ki):O,

o —1a,

These equations are solvable by the method of
characteristics which lead to:

f(z) =Lexp[i‘/(0t2 —ia, —ki)z} g(z):Mexp[i ((12 —ia, —kg)zJ
(2.9

For our future purposes, we mtroduce the following
new dependent relations:

k=& + 0, ky—E +ik, (2.10)

Inserting Eq. 2.9 into 2.7 one gets:
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for z—e, the amplitudes ..M vanish. The Rayleigh waves
are assembled by horizontal component and vertical
component. Here, we write the horizontal component and
vertical component from the two potential functions
Eq. 2.3a and b. The components that fulfill conditions
Eq. 2.2 are:

(¢z -9, )L +(¢, +0, )M=0 (Horizontal component) (2.12a)

(—qJ“ +y, )L + (lp“ - qJH)M =0 (Vertical component) (2.12b)

The horizontal component is chosen according to
Pujol (2003) implication on Rayleigh waves. The Rayleigh
waves that propagate horizontally would generate stress
in both the horizontal and vertical directions of the
medium while the Rayleigh waves which propagate in
vertical direction would only create stress vertically.
We now propose another form of the horizontal and
vertical components for Rayleigh waves, though
equations Eq. 2.12a and b must again fulfill the Cauchy-
Riemarm conditions.

Introducing Eq. 2.11 mte 2.12a and b, this yields:

[(208 {?\éﬂﬁéfﬂLf{ﬁa (o& (% —&f,)z”M:O (2.13a)

[2'1(1 {(ccg—(232—%)2)}L+[(2u2—(2;—&;)2):|M=0 (2.13b)

Equation (2.13a, b) are similar to that obtained in Fan
(2004). Referring to Fan (2004), the condition that T, and M
have nontrivial solution 1s that the determinant of the
coefficients 1s zero. This yields the frequency equation or
the polarization equation:

-7 -G-8 [l -] o

(2.15)

For ¢ =1, Eq. 2.15 1s exactly sumilar to Eq. 1.3 which
represents velocity dependent Rayleigh waves. Tn next
section, we use Rayleigh waves in terms of velocity and
amplitude and subsequently obtamn their linear and

nonlinear characteristics. We are of the opinion that these
nonlinear Rayleigh waves are the ones which left the trails
of crucial surface displacements such as sand volcanoes
and earth crack on the earth. The actual figures for sand
volcanoes and earth crack can be referred to Tarbuck and
Lutgens (1994).

LINEAR AND NONLINEAR RAYLEIGH WAVES

The results of the Rayleigh wave’s modelling can be
interesting if the quivers of the Rayleigh waves are
revealed from simulation. The igmtion of Rayleigh waves
till their annihilation are shown later in this section for the
generation of soil displacements i.e., land subsidence,
sand volcanoes and earth crack. Motivated by the fact
that the oscillation of a damped spring-mass system
around the equilibrium can be represented by a sine wave,
we heuristically develop an alternative method of
reduction for Eq. 2.4. Thus without loss of generality, the
Eq. 2.4 are merged together and yielding:

W%%, 3.1

C

ésmqb: 0=0pg =t + 2 + 3129:3¢2 R
Equation 3.1 1s nearly simlar as sine-Gordon equation
in the course of investigation of surfaces displacement by
soliton. By focusing on the characteristics of the Rayleigh
waves that will point out to the amplitude, one has to
derive the imtial characteristic of these waves by
introducing the tangent line or characteristic line of
the imtial Rayleigh waves into Eq. 3.1 to denote the
solutions dependent on characteristic (amplitude). The
corresponding tangent line from Eq. 2.7 and 2.9 1s:

_ Lexpli(-ox) |
Mexp[i(cot)]

(3.2)

20 |z

By using Eq. 3.2, 1t 1s sufficient to work out Eq. 3.1 so
as to generate the Rayleigh waves. However, we would
like to remtroduce the variables u and wto represent
Eq. 3.2 such that:

w
The inverse of Eq. 3.3 is:
(tzarctamE (3.4
w

Similar to solving initial value problem, mnserting
Eq. 3.4 into 3.2 yields:
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Differentiating Eq. 3.5 with respect to x and t, we
obtain the respective expressions as:

2 Y 2 2
w100 _1IW] (o, ) Of100]  0udu_ , o
ax\udx

W
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Rearranging Eq. 3.6a and b, we obtain:

RREISEAIN
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(3.7b)

Previously, we separated the Eq. 3.5 into 3.6a and
3.6b with the purpose of rearranging the mathematical
structures to give Eq. 3.7a and b. The next step 1s to retum
1ts onginal formulation by adding together Eq. 3.7a and b.
These results in:

CL o 1w 1 a(18) | e o (38)
dwatl wa au |oxluax

WwW— un—

at X

Eventually we write Eq. 3.8 as:

2 2

%u%[za_g} _av, ;ﬁ[_ia_w] L (3.9)
u_— X W
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These PDEs are amenable to solution by integrating
which leads to:

82121 =20 +¢u (3.10a)
82W=2bzwj +dw (3.10b)
az

Multiplying ow/ox to Hq. 3.10a and ow/dt to Eq. 3.10b
and the integration yields:

2

[%] =b'u’ +4fc’ul +e (3.11a)
2

[?} =b2W‘1-¢—Jd.l_2vv/2+el (3.11b)

By using Eq. 3.10aand b, 3.11a and b, the Eq. 3.5 can
now be written as:

(g, —d )V +(c —d )’ + 2f =v' -1 + 2¢, (3.12)
The Eq. 3.12 means that:
¢ —d =%l e=f (3.13)

Relations Eq. 3.13 are important for limiting the
solutions for Eq. 3.1 within the series; the Rayleigh waves
emerge when ¢,-d, = -1 and it ceases when ¢,-d, = +1 or
vice versa for e, = f, which will be plotted later.

Solutions for b=0,e=0: Whenb=0,e=0,Eq. 3.11a
and b give:

[%T e (3.14a)

[?j _JEw (3.14b)

These PDEs are amenable to solutions by the method
of characteristics which leads to:

u=a, exp(—yax) (3.153)
wa, expl i) (3.15b)

Since, the solution is proposed to be in the form of
Eq. 3.4, without loss of generality Eq. 3.15a and b are
iserted into Eq. 3.4 to give:
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(3.16)

a exp(—\/:)() _
¢ = arcta]'1|:az exp(, '_Cl ih):|, ¢ = 1tol

Figure 2 shows the evolution of rayleigh waves from
-1<¢,<1 according to Eq. 3.16. With initial amplitude for P
waves and S waves are chosen equal to 1, the Rayleigh
waves emerge as displacement of height 0.7854 from the
surface according to Fig. 2a rather than at the height 1 for
velocities depending on x and t such thatx :-1:1:and
t=-1:0.1:1. Figure 2b and c explain the formation of
Fig. 2¢. Note that, the subsidence displacement emerges
by Rayleigh waves become apparent from Fig. 2a-f. From
Fig. 2f, the Rayleigh wave’s type Eq. 3.16 creates the dip
depth at around 0.2 while the peak height is at around

ORI
______ 2

R e

1.5 from initial displacement height 0.7854. Amazingly,
this amplitude and velocity dependent Rayleigh waves
Eq. 3.16 show that the displacement by Rayleigh waves
did not emerged initially from the medium surface but at
the height above the medium surface.

Solutions forb=0,e # 0: Whenb=0,e = 0, Eq. 3.11a

6[1 2
[&j =qu’ +e

and b give:

(3.17a)

(3.17b)

AN
e NS

Fig. 2: The displacements by Rayleigh waves (3.16) at the surface, are plotted for-1<c;<1,a;,a,=1.(a)¢c, =-1,
gb)e, =-0.8(¢)c,;=-0.5,(d)c;=0,(e)c,=0.5and (f) ¢, =0.1
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Fig. 3: The displacements (a-d) by Rayleigh waves (3.20a) at the surface are plotted for 1>¢,>0, f, g = 1 while the
displacements (e-h) by Rayleigh waves (3.20b) at the surface are plotted for -1<¢,<0,f, g=1. (a)c, =1, (b)
¢, =038,()c;=05,(d)e,=0.1,(d)¢c;=-0.1,(e) ¢, =-0.1, (1) ¢, =-0.5,(g) ¢, =-0.8 and (g) ¢, = -1
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These PDEs are amenable to solutions by the method
of characteristics which leads to:

(3.18a)

u=\/CElsinh((\/c_l)xif)

W= ’cleil cosh((,lc1 Tt +g)

Since, the solution is proposed in the form of Eq. 3.4,
without loss of generality (3.18a) and (3.18b) are inserted
into Eq. 3.4 to give:

(3.18b)

= acin| Yo L SR 1) (3.19)
\/a cosh((\/cl?)t+g)

The calculus requires ¢, # O for finite solution. Thus,
Eq. (3.19) yields:

¢ =arctan e -1 sinh((\/a)x+f) , ¢ 1 to 01 (3.20a)
\/E cosh((,[cl—l)t+g)

¢ =arctan e t1 sinh((\/a)x+f) c:—01to -1 (3.20b)
\/E cosh((,/cl+l)t+g)’ v

The Fig. 3 shows the displacement by Rayleigh
waves Eq. 3.20a and b with velocities depending on x and
tsuchthatx,t:-1: 1. Both Eq. 3.20a and b give Fig. 3a-h
which show the process of earth crack emergence. By
comparing Fig. 3 with Fig. 2, the Rayleigh waves Eq. 3.20a
and 3.20b emerge at the surface, because it does not
depend on the P and S wave’s amplitudes. This type of
Rayleigh waves Eq. 3.20a and b are not dependent on

phi

P and S wave’s amplitude. Besides, we observe 2 stages
of displacements. The first stage displacement is by the S
waves in accordance to the direction showed in Fig. 3a-d.
The S waves push the particles upwards. The second
stage of displacement is by the P waves in accordance
to Fig. 3e-h. Next we will show the roles of f and g in
Eq. 3.20a and b.

From Fig. 4a and b, the Rayleigh waves make another
type of displacement with £, g = 0. Only Eq. 3.20a is
plotted since Eq. 3.20b will give similar figures but in the
different direction as showed in Fig. 3. Here, we conclude
that the Rayleigh waves Eq. 3.20a and 3.20b are
dependent on P and S wave’s coefficients.

Another question arises here, what eventually
happen to the series of profiles shown in Fig. 3 and 4. We
address the solution by plotting Eq. 3.20a and b for
¢, ==£1.1 as illustrated in Fig. 5.

From the graphical output, Fig. 5 shows the formation
of the earth crack. The discussion above is referred to the
amplitude and coefficient dependent Rayleigh waves. In
the next section, we will be using another type of Rayleigh
waves.

Solutions for b # 0,e =0: Whenb # 0,e =0, Eq. 3.11a

and b give:
2 2
ay_ b'ut +cu?, CLA b*vt+d v
ox ot

These PDEs are amenable to solutions by the method
of characteristics which leads to:

(3.21)

J_ (J_X) =y +1)sinh( (clil)t)

(3.22)

Since, the solution is proposed in the form of Eq. 3.4,
without loss of generality Eq. 3.22 is inserted into Eq. 3.4
to give:

Fig. 4: The displacements (a)-(b) by Rayleigh waves (3.20a) at the surface are plotted for 1>¢,d>0,f, g=0. (a)c,=0.5

and (b)c, =0.1
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Fig. 6: The displacements (a-c) by (3.24a) at the surface are plotted for ¢, : 0.9 to 0.1 while the displacements (d-f) by
(3.24Db) at the surtace are plotted for ¢, : -0.1t0-0.9. (a) ¢, =0.9,(b) ¢, =0.5(¢)¢,=0.1,(d)¢,=-0.1, (e) ¢, =-0.5 and
¢, =-0.9
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Fig. 7: ¢, =+£1.1

‘/a sinh(\/ﬁt)

9= arCtan{Msjnh(\/aX)

} =01  (323)

In other words, we write Eq. 3.23 as:

& sonlE=

¢=arctan{ } ¢ :09 001 (3.24a)

\/a sinh(mt)

(I):arctan[ ] c,:—0.1 to =09 (3.24b)

Figure 6 shows the Rayleigh waves generated from
Eq. 3.24a and b. Apparently, this is a single stage of
displacement as compared to Fig. 4 and 5. It is shown that
the two Rayleigh waves exist in accordance to Fig. 6. By
plotting ¢, = £1.1, we obtain Fig. 7. Clearly it is observed
that Fig. 7 shows the formation of sand volcanoes as
comparable to the sand volcanoes as seen at the Imperial
Valley, California (Tarbuck and Lutgens, 1994).

CONCLUSIONS

In this study, the Rayleigh waves are explored deeper
with the help of the well-known nonlinear sine-Gordon
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equation. Three different types of Rayleigh waves with
displacements are shown; amplitude dependent Rayleigh
waves, P and S waves coefficient dependent Rayleigh
waves and dual Rayleigh waves. Amplitude dependent
Rayleigh waves are resulted in land subsidence whiles the
P and S wave’s dependent Rayleigh waves resulted in the
formation of earth cracks. The dual Rayleigh waves are
seen to form the sand volcanoes. Obviously the
nonlinearity factor can no longer be ignored, since we
have shown here that the sine-Gordon equation can
effectively model the nonlinear Rayleigh waves. Besides,
we have shown the possibility of improving the Rayleigh
waves as discussed in Fan (2004) by implementing the
nonlinear wave equation into their framework.
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