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Abstract: Tn this study, a Neural Fuzzy Inference Network (NFIN) for controlling the temperature of the system
has been proposed. The NFIN is inherently a modified fuzzy rule based model possessing neural networl’s
learning ability using hybrid learning algorithin which combines gradient descent and least mean square
algorithm. In contrast to the general adaptive neural fuzzy networks where the rules should be decided in
advance before parameter learning is performed, there are no rules initially in the NFIN. The rules in the NFIN
are created and adapted as on-line learning proceeds via simultaneous structure and parameter identification.
The NFIN has been applied to a practical water bath temperature control system, designed and developed
around Atmel’s 89C51 microcontroller. In the above system, four experiments were conducted on water bath
each for 250 and 500 mI. min~" flow of water for different volume of water and power of heater. The performance
of NFIN has been compared with Fuzzy Logic Controller (FI.C) and conventional Proportional Integral
Denvative (PID) controller. The three control schemes are compared through experimental studies with respect
to set point regulation. It is found that the proposed NFIN control scheme has the best control performance
of the three control schemes.

Key words: PID, adaptive control, neural fuzzy mference network, temperature control, fuzzy logic control

INTRODUCTION

The Proportional-Tntegral-Derivative (PTD) controller
(Yazdizadeh et al., 2009) has been commonly used in
process industries, since it has many advantages such as
simple designing technique, easy application and
parameter design methods and so on. It 1s well known that
appropriate values of PID parameter are the most
unportant aspect which mfluences the PID controller
performance and is hard to get especially for large
time-delay or time-variation uncertain system. Some kinds
of self-tuiming PID controller have been presented to solve
these problems (Wu et al., 2005, Wen and Liu, 2004;
Huapeng and Handroos, 2004; Astrom et al, 1993,
Astrom and Hagglund, 1995; Chu and Teng, 1999; Ho and
Xu, 1998). In this study, we use the neurofuzzy based
tuning formula of PID controller for developing Neural
Fuzzy Inference Networle (NFIN) system.

The concepts of fuzzy logic and artificial neural
network for control problem have been developed into a
popular research topic m recent years (Hsu, 2007
Fakhrazari and Boroushaki, 2008, Lin and Xu, 2006). The
reason is that the classical control theory usually requires

a mathematical model. The maccuracy of mathematical
modeling of the plants usually degrades the performance
of the controller, especially for nonlinear and complex
control problems (Astrom and Wittenmark, 1989). On the
contrary, the advent of the Fuzzy Logic Controllers
(FLC’s) (Draincov et al., 1996; Harris et al., 1993; Sugeno,
1985; Tareghian and Kashefipour, 2007) and the neural
network controllers (Miller ef «of., 1990, Yabuta and
Yamada, 1991) based on multilayered Back Propagation
Neural Networks (BPNN’s) has inspired new resources for
the possible realization of better and more efficient control
(Kosko, 1992; Lin et al., 1996, Hourfar and Salahshoor,
2009)  over traditional adaptive control systems
(Narendra et al., 1991). That is, they do not require
mathematical models of the plants. The traditional neural
networks can leamn from data and feedback but the
meaning associated with each neuron and each weight n
the networlk is not easily understood. For a BPNN, its
nonlinear mapping and self-learning abilities have been
the motivating factors for its use in developing mtelligent
control systems (Yabuta and Yamada, 1991). However,
slow convergence is the major disadvantage of the BPNN.
Alternatively, the fuzzy logic systems are easy to
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appreciate because it uses linguistic terms and the
structure of if-then rules (Miller et al., 1990). The
simplicity of designing these fuzzy logic systems has
been the advantage of their
umplementation in a lot of industrial process (Islam et al.,
2007). There has a lot of fuzzy P, fuzzy PD and fuzzy PID
control schemes were proposed in literature (Visioli, 2001,
Haiguo and Zhixin, 2007; Juang and Lin, 1998). Despite
the advantages of the conventional FI.C over traditional
approaches, there remain a number of drawbaclks in the
design stages. Even though rules can be developed for
many control applications, they need to be set up through
expert observation of the process. The complexity in

main successful

developmng these rules increases with the complexity of
the process. FLC’s also consist of a munber of parameters
that are needed to be selected and configured m prior,
such as selection of scaling factors, configuration of the
center and width of the membership functions and
selection of the appropriate fuzzy control rules. In
contrast to the pure neural networlk or fuzzy system, the
neural fuzzy network (Nurmnberger ef al, 1999,
Azeem et al., 2003; Chopra et al., 2005; Kasabov, 1996;
Caswara and Unbehauen, 2002; Munasinghe et al., 2005;
Ouyang et al., 2005; Arbaoui et al., 2006) representations
have emerged as a powerful approach to the solution of
many problems (Lin ef al., 2001).

In this study, a Neural Fuzzy Inference Network
(INFIN) 1s proposed to combine the advantages of fuzzy
logic and neural networks. The NFIN 13 a fuzzy
rule-based network — possessing
learning ability. A major characteristic of the network 1s
that no pre-assignment and design of the rules are
required. The rules are constructed automatically during
the on-line operation. Two learning phases, the structure
identification as well as the parameter learning phases
(Lin and Tin, 1996), are adopted on-line for the
construction task. The structure identification determine

neural  network's

the proper number of rules needed 1.e., fimding how many
rules are necessary and sufficient to properly model the
available data and the number of membership functions
for mput and output variables. Parameter learning phase
1s used to tune the coefficients of each rule (like the shape
and positions of membership functions). In this study, a
Neural Fuzzy Inference Network (NFIN) is proposed to
overcome the disadvantages of the BPNN and FL1.C.
Temperature control is an important factor in many
process control systems (Khalid et al., 1993; Khalid and
Omatu, 1992; Tsai et al., 2008). If the temperature is too
high or too low, the final product is seriously affected.
Therefore, it 13 necessary to reach some desired
temperature points quickly and avoid large overshoot.

Since the process-control systems are often nonlinear and
tend to change in an unpredictable way, they are not easy
to control accurately.

In the present study we conducted four sets of
experiments, each for 250 and 500 mL. min~" continuous
flow of water with different volume of water and power of
heater. In these experiments, the tracking performance of
the three controller’s i.e., NFIN controller, FL.C controller
and conventional PID controller in respect of controlling
a set point temperature of 50°C are studied under the same
traiming process via a simulation of above water bath
temperature control systems. This study shows that the
NFIN has good control performance of the three
temperature-control system and 1s able to cope with the
disadvantages of the BPNN.

NEURAI FUZZY INFERENCE
NETWORK (NFIN)

NFIN learning: The learning scheme is mainly composed
of two steps. In the first step, the number of rules nodes
(hence the struchure of the network) and initial rule
parameters (weights) are determined using structure
identification; in the latter all parameters are adjusted
using parameter identification as shown in Fig. 1.

To start the structure tuning, a training set composed
of input-output data which contains n inputs and one
output must be provided. The data pomts have been
assumed to be normalized in each dimension and they
consider as a possible cluster center which define a
measure of the potential of data pomt (Chiu, 1994). To
extract the set of initial fuzzy rules, firstly data is separated
into groups according to their respective classes.
Subtractive clustering is then applied to the input space
of each group of data mdividually for identifying each
class of data. Each cluster center may be translated into a
fuzzy rule for identifying the class.

A fuzzy rule of the following form is adopted in our
system:

s  Rulel: IfX is A and X, is A, and... then class is ¢,

Training data
3 ) 4
Coarse Structure  |Initi Prameter Final R
Structure| identification |Fuzzy identification  |Fuzzy model
model

Fig. 1: Steps of leamning scheme for NFIN
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) 4

Fig. 2: Structure of Neuro-fuzzy control

where, X; is the i’th input variable and A is the
membership function (Gaussian type).

For each rule, the first antecedent corresponds to the
first input, the second antecedent corresponds to the
second input etc. and for output we use centroid
defuzzification method.

The parameters of the mitial fuzzy rules are tuned by
using neural network techniques through parameter
dentification. A neural network with four layers 1s
designed based on the fuzzy rules obtained in first phase.
To realize the described fuzzy inference mechanism, the
operation of a neural network is shown in Fig. 2 and
structure of NFIN described below.

Structure of the NFIN: The NFIN consists of nodes, each
of which has some finite fan-in of connections
represented by weight values from other nodes and
fan-out of connections to other nodes as shown in Fig. 3.
Associated with the fan-in of a umt 13 an integration
function f which serves to combine information, activation
or evidence from other nodes. This function provides the
net mput for this node:

net — input:f(ufk),u(zk),.....u;k);wfk),w(zk),.....w;k) ) (1 )
where, uw®, w® ... uT(k) are inputs to this node and
w,¥ owh w," are the associated link weights. The

Layer k

Fig. 3: Basic structure of a node in a neural network
superscript (k) indicates the layer number. A second

action of each node 13 to produce an activation value as
a function of its net-input:

Output=0{" =a(f) (2)

where, a (.) denotes the activation function. In a standard
form:

L 3)

f:iwi“‘) u!® and a=
1+e

1=l

Now the functions of the nodes m each of the layers
are described below (Farivar et al., 2009).
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Layer 1: No computation is done in this layer. Each node
in this layer which corresponds to only one input variable,
transmits mput values to the next layer directly. That 1s:

=uw, xV=u, “4)

In the above equation, the link weight (w,) in layer
one is unity.

Layer 2: Units i this layer receives the input value
(X, X,... X)) and acts as the fuzzy sets representing the
corresponding input variable. Nodes in this layer are
arranged into | groups; each group representing the
IF-part of a fuzzy rule. Node (1, 1) of this layer produces 1its
output H¥}, by computing the corresponding Gaussian
membership function:

@ 2
Hf) —exp { {u, my } :| (5)
o,

where, m,, 1s center (or mean) and o, is width (or variance)
of the membership function.

Layer 3: The number of nodes in this layer is equal to the
number of fuzzy rules. A node in this layer represents a
fuzzy rule; for each node, there are n fixed links from the
input term nodes representing the TF-part of the fuzzy rule.
Node H,;® of this performs the AND operation by product
of all its inputs from layer 2. For instance:

Ho [ ©)
i=1

Layer 4: Tlus layer contains only one node whose output
O" represents the result of centroid defuzzification, i.e.,:

I I
S ¥ e o
RTINS VT

0

where
(4 63
(X] 7HJ' ¢

Where, ¢ is the class of data as discussed above and
it is also called the fuzzy singletons defined on output
variables. Apparently, my, o, and ¢, are the parameters that
can be tuned to mmprove the performance of the system.
The above parameters have been tuned by using
parameter learning. After that a hybrid learning algorithm
which combines the gradient descent method and the

Least Square Estimator (LLSE) method is used to refine
these parameters. Since gradient descent method is
generally slow and likely to become trapped in local
minima when it can be apply to identify the parameters in
an adaptive networlk.

The following parameter learning is performed on the
whole network after structure learning. The idea of
backpropagation (Rumelhart and McClelland, 1986) 1s
used for this supervised learning. The goal is to mmimize
the error function:

F= -y O (&)

where, y* (t) is the desired output and y (t) is the current
output. For each training data set, starting at the input
nodes, a forward paess 1s used to compute the activity
levels of all the nodes in the network. Then starting at the
output nodes, a backward pass 1s used to compute JE/Jy
for all the hidden nodes. Assuming that adjustable
parameter w 18 my; and o; in a node, the general learning

rule used 1s:
Awo— a—E (9)
ow
w(t+1):w(t)+n(7a—EJ (10)
ow

where, 1) is the learning rate and:

&E oE d(activation) dE do (11)
dw  d(activation) ow du aw
oE _dE du of 12

ow oo Of Bw

To show the learning rule, we shall show the
computations of JE/Aw, layer by layer, starting at the
output nodes and we will use the membership functions
with centers m’s and widths os as the adjustable
parameters for these computations. These adjustable
parameters are updated by the backpropagation algorithm.
Using the chain rule, we have:

(3]
F__Ey A (13)
m® 3y 4 HP am®

where,

E_ -y (14)
oy
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o’y (15

(3 (3)
RIS

BH?) {HSB) 2(u, — my) if termnode jis connected torulenodek, (16)

amgf) 0 ci otherwise, 0

And m? is updated by:

JdE
m (t+D)=m (t) - n—sr (17
i} i amg]l)
A
- O =nfy -y ) Tt as)
] 1
Similarly, we have:
or By M 19)

2 v 3) 3l
8(5lJ dy 5 E)HJ acu
Where:

2
gH HY 2(11, _mu) if termnode jisconnected torulenodek, (20)

@ g
do, 0 o

otherwise, 0

And o, is updated by:

JE
o (=0 O ngoer 1)

EXPERIMENTAL AND SIMULATION STUDIES

Problem statement: The continuous-time temperature
control of a water bath system (Tanomaru and Omatu,
1992 is described as:

LICIIOIEAS 0] (22)

dt C RC

where, y (t) 18 system output temperature in °C, u (t) 1s

heating flowing inward the system, Y, is room
temperature, R and C are the equivalent thermal resistance
and capacity between the system borders and
surroundings respectively. We assume both quantities to
be constant, now rewrite the above Eq. 22 mto discrete

time form as:

$ kD =AY (0@ 1AMy, (23)

1 625"(14)-3’

where,

AT) =
BTy =La-et)

Equation 23 models a real water bath temperature-
control system, where « and P are some constant
values describing R and C. The system parameters used
in this example are ¢ = 1.00151e™, p=8.67973¢ ",y =
40.0 and y, =25.0°C which were obtained from a real
water bath. The plant input u (k) is limited between O volt
and Svolt. The sampling period is T, = 30 sec. The system
configuration is shown in Fig. 4, where y" is the desired
temperature of the controlled plant.

Experimental setup: To see whether the proposed NFIN
can achieve good performance and overcome the
disadvantages of the BPNN, we compare 1t with the BPNN
under the same aforementioned training procedure on a
simulated water bath temperature-control system. The
schematic diagram of the experimental setup of the water
bath temperature controller is shown in Fig. 5. The
hardware for controlling the temperature of the bath has
been designed and fabricated around the Atmel
microcentroller 89C51. The temperature of the bath 1s
acquired with the help of PRT. When the PRT 1s excited
with a constant current source of TmA current, it gives the
output in voltage form. The voltage 1s so amplified that
the wvalue of the amplified voltage is equal to the
temperature. This voltage is then fed to the 4'4 digit ADC.
This digitized voltage 1s then sent to the PC by
microcontroller through RS232C interface. The program in
PC does the calculations using the NFIN algorithm. After
doing all the calculations it generates the firing angle to
control the energy in the water bath and sends the same

Hybrid learning |

algorithm
d
y (k+ Dy Kk
NFIN u k) > Water bath
controller
y ()
‘ yk+1)
;Il z |

Fig. 4: Block diagram of NFIN controller
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For maintaining
water level

RS 232C
89CS1 |—| l4bitADC|

For TRIAC
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control circuit
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Amplifier

motor
[ Heating
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driver
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Cooling system
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source driver
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Circulator
Cooling

O fins

Fig. 5: Schematic diagram of the experunental setup

Control
rule-base

Fig. 6: Block diagram of FLC

to the microcontroller. Thereafter, microcontroller triggers
the triac accordingly. The NFIN program in PC
continuously monitors the temperature and accordingly
controls the same m the bath. In case it senses any
change 1n the temperature, it automatically modifies the
parameters of the temperature controller. The NFIN
program in PC has been written in Visual BASIC-5.0
language. The program stores the data in the user defined
file as well as plots the online data mn the form of graph on
the screen. A specially designed varying environment is
created by continuous flow of fresh water in such a way
that the level of the water mside the bath remains
constant even if the hot water i1s removed at random
outflow rates. Uniform heat distribution is maintained
using the circulator and the isolated system is used to
minimize external disturbance. The cooling 1s aclhieved at
a constant rate using the refrigeration system of the bath.

Process

Experimental results: In this study, we compare the NFIN
controller to the FL.C and PID controller. Each of the three
controllers is applied to the water bath temperature
control system. The comparison performance measures
include set-points regulation and parameter variation as
change in volume of water and change in power of heater
in the system.

The diserete form of PID controller can be described
by well known expression (L et al, 2006
Anderson, 1987). In this control system K and K are set
as 2.5 and 100, respectively and K, is kept at constant
value of 10.

For the Fuzzy Logic Controller (FLC) as shown in
Fig. 6, the input variables are chosen as e(t) and ce(t),
where e (t) is the performance error indicating the error
between the desired water temperature and the actual
measured temperature and ce(t) 13 the rate of change in
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Fig. 7: Membership functions for e (t), ce (t) and u (t)

—o— NTIN
60 —— FLC

554
50 PP 2BHEBEOBEEEE L T IIEEES

454

Temperature (°C)
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0 1000 2000 3000 4000 5000 6000 7000 8000

Time (sec)

Fig. 8: Temperature response of a water bath having 5 T
volume at 0.5 KW for 250 mL min~" flow using
NFIN, FLC and PID controller

the performance error e(t). The output or the controlled
lingustic variable is the voltage signal u (k) to the heater.
Seven fuzzy terms are defined for each lmguistic variable.
These fuzzy terms consist of Negative Large (NL),
Negative Medium (NM), Negative Small (N3), Zero (ZE),
Positive Small (PS), Positive Medium (PM) and Positive
Large (PL). Each fuzzy term 1s specified by a Gaussian
membership function as shown in Fig. 7. According to
common sense and engineering judgment, 49 fuzzy rules
are specified in Table 1. Like other controllers, a fuzzy
controller has some scaling parameters to be specified.
They are GE, GCE and GU, corresponding to the process
error, the change in error and the controller’s output,
respectively.

In the water bath, four sets of expermments were
conducted, each for 250 and 500 mL min~' continuous
flow of water. In these experiments, the tracking
performance of the three controllers 1.e., NFIN controller,
FLC controller and conventional PID controller in respect
of controlling a setpoint temperature of 50°C are studied.
The four systems of these two flows of water are
categorized i terms of volume of water and power of
heater as shown in Table 2. These are: (1) 5 L with

60 7—o— NFIN
——FLC
55 1—o-PID

50 1

45

40 4

Temperature (°C)

35 1

T T T T 1
3000 4000 5000 6000 7000
Time (sec)

T T
0 1000 2000

Fig. 9. Temperature response of a water bath having
10 L volume at 1.0 KW for 250 mL min™" flow
using NFIN, FL.C and PID controller

Table 1: Fuzzy rule base

Aele NB NM NS 7E PS PM PB
NB NB NB NB NM NS NS ZE
NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM
ZE NB NM NS ZE P8 PM PB
Ps NM NS ZE PS P8 PM PB
PM NS ZE Ps PM PM PM PB
PB ZE PS PS PM PB PB PB

Table 2: Different values of systemn parameters

Parameters Vahies

Kp 2.5

Ki 100

Kd 10

Power of heater 0.5,1.0and 1.5 KW
Volume of water 5,10 and 15L
Voltage Svolts

Set point temperature 50°C

Rate of flow of water 250, 500 ml.

0.5KW, (2)10Lwith 1.0KW, (3) 10 L with 1.5 KW and (4)
15 L with 1.5 KW. In this way overall eight experiments
were conducted in the water bath.

The simulation results for 250 mL min ' continuous
tlow rate of water for 5L with 0.5 KW, 10L with 1. 0 KW,
10 L with 1.5 KW and 15 L with 1.5 KW are shown in
Fig. 8-11, respectively. In these graphs the temperature
response of three controllers are shown simultaneously
for comparison. Tt is clear from these figures that there is
always large overshoot and settling time for conventional
PID controller and also for all the systems. The
temperature control performance of FLC controller is also
not satisfactory as it takes large settling time. These
problems with both the controllers happen because on
implementing the FLC, the numbers of rules and
membership functions have to be decided and tuned by
hand and PID controller needs proper tuning of K, K, and
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Fig. 10: Temperature response of a water bath having
10 L volume at 1.5 KW for 250 mL min ' flow
using NFIN, FL.C and PID controller

Temperature (°C)

0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Fig. 11: Temperature response of a water bath having
15 L. volume at 1.5 KW for 250 mL. min~" flow
using NFIN, FL.C and PID centroller

both
a long time in design for
achieving good performance. On the other hand
NFIN controller takes much less settling time and
overshoot as compare to FLC and PID controller, to

K; parameters. Altogether we say that

controllers  require

achieve desired temperature of 50°C. This occurs
because on 1implementing the NFIN controller, no
controller parameters have to be decided in advance. We
only need to choose proper traming patterns and the
input vector of the NFIN controller. When we compare
the results of Fig. 9 with 10 having same volume of water
as 10 L but different power of heater than it is observed
that 10 I with 1.0 KW system gives best result for

controlling desired temperature. It means, for good

- NFIN
- FLC
& PID

60

55

50

454

40

Temperature (°C)

I T T T T T T
0 1000 2000 3000 4000 5000 6000
Time (sec)

Fig. 12: Temperature response of a water bath having
5 L volume at 0.5 KW for 500 mL min " flow
using NFIN, FL.C and PID controller

601 —®—NFIN
——FLC
551 -=PID

Temperature (°C)
'
T

0 1000 2000 3000 4000 5000 6000 7000

Time (sec)

Fig. 13: Temperature response of a water bath having
10 L volume at 1.0 KW for 500 mL min~" flow
using NFIN, FL.C and PID controller

tracking control of the system using NFIN, the volume of
water should be mcreased through proportion of 0.5 L
with 0.5 KW power of heater.

The same trend of results, as discussed m above
section, is obtained for the remaining four systems with
500 mL min~"' flow rate of water as shown in Fig. 12-15,
respectively. It 1s also noticeable that systems of
250 mL min~"' flow rate of water gives better result with
less settling time and overshoot as compare to systems of
500 mL min~" flow rate of water with same configuration.
One can say that in our temperature controller the NFIN
tracked well the set point temperature of 50°C by the
optimal design of PID parameters using neural network in
combmation with fuzzy mference rules. It means among
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—a—PID
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Temperature (°C)
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Fig. 14: Temperature response of a water bath having
10 L volume at 1.5 KW for 500 mL. min~" flow
using NFIN, FL.C and PID centroller

Temperature (°C)

T T T T 1
3000 4000 5000 6000 7000
Time (sec)

T T
0 1000 2000

Fig. 15: Temperature response of a water bath having
15 L. volume at 1.5 KW for 5300 mL. min~" flow
using NFIN, FL.C and PID centroller.

the three controllers, NFIN controller has the shortest
rise-time and the best regulation-control performance with
smallest errors in the tracking path.

CONCLUSION

In conclusion, mn this study, a temperature controller
based on Neural Fuzzy Inference Network (NFIN) has
been proposed to control precisely the desired
temperature of water bath. The NFIN 13 a fuzzy rule-based
network possessing neural network's learning ability. The
four experiments were conducted, each for 250 and
500 mL min ' flow of water for different volume of water
and power of heater. The experimental results of NFIN
controller has been compared with FL.C and conventional
PID controllers, through implement on above systems.
These results show that NFIN controller has better

control performance in terms of less settling time with
minimum overshoot and error than the other two
controllers.
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