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Abstract: In this study, a computerized model has been developed to obtain the optimal distribution of the
machines on three cells based on Artificial Neural Network (ANN's). These networks rely on the historical
mput-output data to leamn input output implicit mapping. They are trained using back propagation algorithm.
Comparing the results with those in the literature, it has been proved that the artificial neural network 18 superior
i finding all the possible optimal solution (s) since 1t gives the mimimum sum of voids and/or exceptions for
all the possible ways of forming three cells from n machines. Taking all the possible ways of forming the cells
is of great advantage since; it will provide the designer with more flexibility. An important feature of the
optimization model is that it finds the solution fast regardless the number of machines and parts. The distinct
superiority of the proposed model is that, machine cells and part families are identified and done concurrently
which will decrease the computational time. Results are verified with the aid of computer simulation.
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INTRODUCTION

Group Technology (GT) is a manufacturing
management philosophy that emphasizes on identifying
groups of products with similar design and processing
Cellular Manufacturing (CM) is an
application of GT that attempts to identify a collection of

characteristics.

similar parts (part families) which can be processed in a
manufacturing cell with dissimilar machines. Such an
arrangement of machines facilitates complete processing
of part families within the manufacturing cell
(Panchalavarapu and Chankong, 2005).

Akturk and Balkose (1996) stated that group
technology is one of the most important aspects in the
design of Cellular Manufacturing Systems (CMS). Tt has
been realized that GT based CMS have benefited from the
advantages of both product-based manufacturing
systems and job  shop manufacturing systems
(Soleymanpowr et al, 2002). CM is an effective means of
efficiently producing small batches of a large variety of

part types. A key step m CM 13 manufacturing cell
formation, i.e., grouping parts with similar design features
or processing requirements into families and allocating
associated machines, forming cells. The sumilarity among
the parts in each family allows for signmificant set-up
reductions, leading to smaller economic lot sizes and
lower worle-in-process inventories (Dobado et al., 2002).
Generally, the cell formation problem can be represented
inmatrix format by using a ‘machine-part incidence matrix’
in which all the elements are either zero or one. A one
element mdicates that a specific machme 1s used to
process a specific part and zero element indicates the
opposite (Sarker and Islam, 2000). The problem is
equivalent to block diagonal sing a zero-one input matrix.
Grouping of components into families and machines into
cells result in a transformed matrix with diagonal blocks
where ones occupy the diagonal blocks and zeros occupy
the off-diagonal blocks. The resulting diagonal blocks
represent the manufacturing cells (Nair and Narendran,
1998). The case where all the ones occupy the diagonal
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blocks and all the zeros occupy the off-diagonal blocks is
called perfect diagonal blocks. But this case 1s rarely
accomplished in practice. For that, the most desirable
solution of cellular manufacturing systems 1s that which
gives mmimum number of zero entries mnside a diagonal
block (known as voids) and minmimum number of one
entries outside the diagonal blocks (known as the
exceptional elements). A void indicates that a machine
assigned to a cell is not required for the processing of a
part in the cell. An exceptional element is created when a
part requires processing on a machine that is not available
in the allocated cell of the part. Voids and exceptional
elements have adverse implications in terms of system
operations (Adil et al.,, 1996).

The maimn objective n CM 1s to identify machine cells
and part families such that every part undergoes almost all
of its processing in the assigned machine cell. Cell
Formation (CF) 1s considered to be the first step in CM
design. CF 13 recognized by researchers as a complex
problem. The size of the engineering problem of CM
philosophy can be looked at from many important
characteristics such as: Number of cells, cell size,
operation process plan  and machine
loading/balancing (Srivastava and Chen, 1995). Lee et al.
(2010) suggested a heuristic approach to the machine

sequence,

loading problem in order to reduce the maximum workload
of the machimes by partially grouping them.

Many researchers mentioned that little research has
been done to determine the optimal number of cells and
that 1t 1s usually left as a managerial or facility designer
decision. Several authors have developed and published
solution methods to generate cell formation. Specifying
the number of cells in advance and obtaming all the
natural clustering of the input matrix, can be achieved by
developing algorithms or models that take all the possible
ways of forming p-cells from n-machines. Niknam et al.
(2008) used a hybrid evolutionary optimization algorithm
based on Ant Colony Optimization (ACO) and Siumulated
Annealing (SA) for optimal clustering N object mnto K
clusters.

Since the problem of the cell formation 1s considered
to be complex, many researchers worked on to develop a
solution using Artificial Neural Network (ANN). The ANN
is an efficient method that can be used in CF regardless
the number of machines and parts. Using ANN in cell
formation will make the processing time needed only few
seconds. Sivaprakasam and Selladurai (2008) used
Memetic Algorithm (MA) with Gentic Algoritm (GA) to
minimize the exceptional elements.

Artificial Neural Networks (ANN’s) have received a
lot of attention in recent years due to their attractive

capabilities in forecasting, modeling of complex nonlinear
systems and control. Applications of neural networks
include many various fields among which are engineering
and business. ANN's have been used for forecasting
load (Kalaitzakis et «f, 2002), gasoline
consumption (Nasr et al, 2003), energy (Reddy and
Ranjan, 2003) and financial indicators (Chen et af., 2003;
Tkacz, 2001).

Artificial neural networks are widely used for
forecasting. A large number of successful applications
have shown that neural networks can be a very useful
tool for time series modeling and forecasting
(Zhang et al, 1998). In addition, the simulation
experiments of Zhang et af. (2001) show that neural
networks are valuable tools for forecasting nonlinear
time series when compared to other traditional linear
methods. Even though it may sound that ANN’s are not
needed for modeling and forecasting linear time series due
to the well developed linear system theory, they are
competent in Zhang (2001). The ANN model is trained
with historical time series input-output process data or
observations and is then used to predict the output in the
future.

In this study, a special model for generating a
three-cell formation is developed with minimum sum of

electric

voids (v) and/or exceptions (e). The computerized model
1s designed for the case of unbounded cell size that takes
all the possible ways of forming 3-cells from n-machines
by using Artificial Neural Networks (ANN). The output of
the computerized model will be input to the ANN. For
small number of machines the computerized model can
generate all the possible ways of forming three cells from
n machines and then find the optimal number of exception
(e) plus voids (v) (e+v). For large mumber of machimes the
computerized model can generate only all the possible
ways of forming three cells from n machines, since it is
impossible to run the program to find the optimal (e+v). In
this case the output of the generation of large number of
machines will be mput to the ANN.

The main objective of this study 1s to determine the
exact and optimal solution (8) of forming three cells from
any number of machines by using ANN. The significance
of this model 1s that, the processing time needed to run
the program (the output of the computerized model) takes
only few seconds because machine cells and part families
are identified and done concurrently which will decrease
the computational time. Machine cells and part families are
identified so as to minimize the sum of voids (v) and/or
exceptions (e) according to the designer wish. Moreover,
the designer will get more flexibility in choosing between
different cells.
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Table 1: Computerized model to compute the optimal vahie of exceptions
(e) plus voids (v) (etv)

Optimal-e+v()
For I=1 to Number of cases

1.1 Numl = Read-from-file (The distribution of the of the machine in the
first cell)

1.2 num 2 = Read-from-file (The distribution of the of the machine in the
Second cell)

1.3 MNum3 = Read-from-file (The distribution of the of the machine in the
Third cell)

1.4 Result = Calculate-etv (num 1,num 2,num 3)

Table 2: Computation of the e+v value

int Calculate-e+v (num 1, num 2, num 3)

Initial matrix = InputlinitialMatix ()

Processing-matrix = Rearrange Matrix (initial-matix)

For (int part-no = 0; part-no<n; part-no++)

Cell-number = Assign Part (processing-matrix, part-no)
Parts-cell [part-no] = cell-number

Final-matrix = Final Rearrange (processing-matrix, parts-cell)
Min = GetMin-e+v (final-matrix, parts-cell)

return Min

[ N P P N
[

COMPUTERIZED MODEL

The method describes distributing the machines n
three different cells in all possible way. Table 1 contains
the computerized model that computes the optimal value
of exceptions (e) plus voids (v) (etv). Tt takes the
distributions of the machines m three different cells and
computes the optimal value for each case at the end we
store this value in the Result parameter. The complexity of
this algorithm 13 O (m*n) where m 13 the number of cases
and n is the number of machines.

Calculate-e+v () algorithm presented in Table 2. The
function Input Tnitial Matrix () in line 1 presents any matrix
mput by the user (according to designer) that distribute
machines in three different cells. Rearranging the initial
matrix according to the three input numbers by using the
Rearrange Matrix () function in line 2 and the result stores
in the processing- matrix.

Passing the processing- matrix and the part-no to the
function Assign Part () presented m line 3 (3.1, 3.2) that
responsible to assign each part in its corresponding cell
based on the minimum e+v among the different cells. The
function Final Rearrange () rearranges the matrix in the
final form according to parts distribution among cells
(line 4). Then the Get Min-et+v() (line 5) computes the
minimum value of etv for the specific distribution.

NEURAL NET MODELING

Artificial neural networks were originally inspired as
bemng models of human nervous system. They have been
shown to exhibit many abilities, such as learning,

generalization and abstraction (Patterson 1990). Useful
information and theory about ANN's can be found by
Haykin (1999). These networks are used as models for
processes that have input-output data available. The
input-output data allows the neural network to be trained
such that the emror between the real output and the
estimated (neural net) output 18 mimmized. The model 15
then used for different purposes among which are
estimation and control.

The Artificial Neural Net (ANN) structure is shown in
Fig. 1 with a multi-mput single-output. The 1nputs feed
forward through a hidden layer to the output. The
hidden layer contains processing units called nodes
or neurcons. Bach neuron 1s described by a nonlinear
sigmoid function. The inputs are linked to the hidden
layer which 13 m tum linked to the output. Each
interconnection is associated with a multiplicative
parameter called weight. Note that the feed-forward
neural net of Fig. 1 has only one hidden layer and this is
the case that we are going to consider. A number of
results have been published showing that a feed-forward
network with only a single hidden layer can well
approximate a contimuous function (Cybenko, 1989,
Funahashi, 1989). In practice, most of the physical
processes are continuous.

An artificial neural net mathematical model that
represents the structure shown in Fig. 1 is written as:

yo(t+1D) =W, *tanh(W, *U(t) + B,)+b, (N

where, y,, (t + 1) 1s the output of the neural net model, U
is a column vector of size N that contains the inputs to the
ANN, W is arow vector of size h that contains the output
weights from the hidden layer to the output with h being
the number of hidden nodes, W, is a matrix of size hxN
that contains the input weights from the inputs to the
hidden layer, B; is a column vector of size h that contains
the input biases and b, is the output bias. Note that tanh
(W; *U + B)) is the activation function of the hidden layer.
It 1s a column vector of size h.

The weights and biases of the ANN are determined
by traming with the lstorical mput-output data.
Backpropagation 1s an example of a tramning algorithm. For
a given number of hidden newrons the network 15 trained
to calculate the optimum values of the weights and biases
that minimize the error between the real and ANN outputs.
We assume that after an appropriate choice of the number
of hidden newrons and a suitable training period, the
network gives a good representation of the estimation
system given in Eq. 1.
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Fig. 1: Neural net structure
SIMULATION RESULTS

To illustrate and test the proposed model, the
researchers will apply it on an industrial problem cited by
Chen and Cheng (1995). Who seolved by using Adaptive
Resonance Theory (ART1). Table 3 shows the
machine-part matrix to the problem consisting of 646
machine-part. To validate and verify the proposed model,
this problem will be solved and the result will be compared
with their solution.

Since we have 6 machines, then all the possible ways
to distribute 6 machines to form 3 cells is equal to 90 ways
(Mukattash, 2000).

Based on the model developed input-output
data will be generated. The data contains 90 pattemns.
Each pattern includes data about the 3 inputs: the
machines
output et+v.

The 90 data patterns are used to train an artificial
neural net model for the process. The training was done
with the software package Matlab. Experiments were run
for different numbers of hidden neurons.

It was observed that the quality of the results
depends on the number of hidden newons. The square
error, 3, is defined as:

m each of the 3 cells and corresponding

IR RS 2
SfMEl‘,(ym ¥,) (2)

where, M is the number of data points which is equal to 80
In our case, V,, 18 the neural net output and y, 1s the real
output. Recall that the output is the e+v value.

The square error (3) 1s plotted as a function of the
number of hidden newons in Fig. 2. Note that this
function 15 decreasing. The square error almost settles at
a small value when the number of neurons is large
enough. By mspecting Fig. 2, the neural net with 20
hidden neurons was selected as the optimum net. The
corresponding square error 1s equal to 0.1111. For nets
much larger than 20 hidden newons the square error
decreases further but makes the neural net large involving
large number of parameters which causes the undesirable
over-fitting of data.

Qutput

Y (+1)

45 4

10 15 20 25 30 35 40
No. of neurons

[=]
th -

Fig. 2: The least square error as a function of the number
of ndden neurons n the neural net

Table 3: Part list and machines

P1 P2 P3 P4 P5 Po
M1 0 1 0 1 0 1
M2 0 0 0 0 1 1
M3 0 1 0 0 1 1
M4 1 0 1 0 0 0
M3 1 0 1 0 0 0
M6 0 1 0 1 1 0

The real output (voids + exceptions, e+v) and the
optimum (20 hidden newrons) neural net approximated
output are plotted in Fig. 3. Note that the two outputs are
very close to each other. This indicates the accuracy of
the selected neural net. Therefore, the neural net can be
relied ontolocate the optimum etv value which is of great
practical importance. The complete solution of this
problem 1s shown m Table 5. Machine cells and part
families are identified in this problem so as to minimize the
sum of voids and exceptions.

Table 4 shows the solution of the problem in
Table 3 using Adaptive Resonance Theory (ARTL). Tt is
clear that there is two voids and two exceptions
(etv 4) and this solution supposed to be optimal.
Table 5 shows the solution used the proposed model.
Comparing Table 4 with 5, it can be concluded that the
proposed model gives better result than AR T1model since
there are three exceptions and novoids. (etv = 3). Also
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Table 4: ARTI solution
No. of voids in cells and ones outside cells =5

2 5 6 1 3 4
1 1 0 1 0 0 1
2 0 1 1 0 0 0
3 1 1 1 0 0 0
4 0 0 0 1 1 0
5 0 0 0 1 1 0
6 1 1 0 0 0 1
Table 5: Proposed model solution
No. of voids in cells and ones outside cells =3
2 4 5 6 1 3
1 1 1 0 1 0 0
6 1 1 1 0 0 0
2 0 0 1 1 0 0
3 1 0 1 1 0 0
4 0 0 0 0 1 1
5 0 0 0 0 1 1
14 = —R el
Neural net
12 4
’ M ’ ' Hh f
™
+ 84
Q
6 -
!
4 4
Y
2 T L] ) L] L] T L] L] 1
0 0 20 306 40 50 6 70 80 90
Tndex

Fig. 3: The selected optimum neural net training results

this result (etv = 3) 1s optuimal smce any other cell
formation will not give (e + v) less than 3.

CONCLUSION

The challenging problem of distribution of machines
in a number of cells has been solved with new techniques
mvolving advenced programming and artificial neural
A computerized model was presented to
generate all the possible distributions in the various cells
and find the optimal solution (s), that 1s, the ones that
have mimmum of value of voids and/or exceptions. The

networks.

distinct superiority of the proposed approach is that,
machine cells and part families are identified and done
concurrently which will decrease the computational time.
Moreover, machine cells and part families are identified so
as to minimize the sum of voids and/or exceptions
according to the designer wish which will give the

designer more flexibility in choosing between different
cells. Simulation results verified the validity of the model.
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