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Abstract: Tn population based cancer clinical trials, a proportion of patients will never experience the interested

event and considered as “cured” or “immunes”. The majority of recent cancer studies focus on the estimation
of immune proportion. In this study we investigated the estimation of proportion of patients curd of cancer in
case of left censored data based on the Bounded Cumulative Hazard (BCH) model proposed by Chen in 1999.
The analysis provided the Maximum Likelihood Estimation (MLE) of the parameters within the framework of
the Expectation Maximization (EM) algorithm where the numerical solutions of the estimation equations of the

cure rate parameter could be employed.
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INTRODUCTION

Survival models that incorporate the cure fraction in
the analysis are called cure rate models. Recently, survival
cure models are being widely used in analyzing data from
cancer studies. They are used for analyzing survival data
from various types of cancer in which a proportion of
patients becomes free of any signs or symptoms of the
disease, Amiri ef al. (2008). The first created cure rate
model 15 the mixture model which constructed by Boag
(1949) and later developed by Berkson and Gage (1952). In
this model, a certain proportion 1t of patients are cured as
well as the remain 1 -n are not.

In this model the survival function for the entire
population can be written in terms of the ‘mixture” of the
cured part plus the uncured part such that:

S (1) = m+(1-1m) S, (1) (1)

where, S (t) and S, (t) are the survival functions for the
entire population and the uncured patients, respectively.
The survival function of uncured patients can be
estimated parametrically or non-parametrically which leads
to parametric or semi-parametric survival function,
respectively, where in the parametric case, a particular
distribution for the failure time distribution of uncured
patients could be employed such as exponential,
Weibull, Gompertz, negative binomial and Generalized
F distribution (Savadi-Oskouei et al., 2010).

The literature on mixture cure model could be found
in the study of Gamel et al. (1990), Kuk and Chen (1992),
Taylor (1993), Peng and Dear (2000), Sy and Taylor (2000),

Peng and Carriere (2002), Uddin et of. (2006), Liu et al.
(2006a), Yu and Peng (2008) and Abu Balar et al. (2009).

InEq 1, S(t) = 1-F (t), where F (t) 1s the cumulative
distribution function. Furthermore, F (0)=0and F (e) =1,
so that 3 (0) =1 and S (o) = 7 the plateau value. The
hazard function concomitant to this model is:

h(t):@

S(H’

where, f (t) is the probability density function (p.d.f)
attendant to F (t).

Despite the widely used of the mixture model in
survival analysis, it has some linitations as was discussed
by Chen et al. (1999), some of these drawbacks are:

» The proportional hazard structure which 1s a
desirable property for any survival model cannot be
constructed in the presence of covariates

»  When including covariates through the parameter 1
via a standard regression model, then mixture model
yvields improper posterior distributions for many
types of non-informative improper priors, including
the umform prior for the regression coefficients

»  Mixture model does not appear to describe the
underlying biological process generating the failure
time, at least the context of cancer relapse, where cure
rate models are frequently used

Chen et al. (1999) proposed the Bounded Cumulative
Hazard (BCH) model developed by Yakovlev et al. (1993)
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as the viable alternative to the mixture model. This
alternative model 1s quite attractive for several aspects:

* It is derived from a natural biological motivation

¢ Tt has proportional hazard structure through the cure
rate parameter

¢ Tt is computationally very attractive

* It has a mathematical relationship with the mixture
cure rate model

The bounded cumulative hazard model assumes that
for an individual in the population left with N cancer cells
after the initial treatment. The cancer cells (often called
clonogens) grow rapidly and replace the normal tissue
later on (cancer relapse). N may follows Poisson, Bernoulli
or negative binomial distribution (Rodrigues ef af., 2009).
However, in this study we will consider N to follow the
Poisson distribution with a mean of 6.

Let 7,1 =1, 2, ~N denotes the time of the ith
clonogen to produce detectable cancer mass. Then the
time 1t takes cancer to relapse can be defined by the
random variable T = min [Z, 0<1<N], P (Z,=«) and Z/s are
independent and identically distributed (i.i.d) and that N
is independent of the sequence 7, 7,, -, Zy. Therefore,
the survival function for T and hence for the population,
1s given by: S (t) = P (T>t) (Probability no cancer by the
timet).

=P (N =01P (Z,>t, Z,>t, Z,>t, N=1)
=exp (-O)+HP (Z=) P (N = D[+HPEZ =) P (Z,>t)
PN =2)+PEZ>0HP(Z>t)P(Z>t) P (N =3)]+-
+[P (Z,>t) P (Z=t) P (Z>t) P (N = n)]
=exp (O[S () P (N = DH[S () P (N = 2]
HS (1 P (N = 3)+-[S ()P (N =n)]

—exp(-0)+ Y [S(OF P(N=n)]

(3(1))" exp (-6)(8)")
!

I

=exp(-0)+ EN:

oxp(-gy+ 3 SO0 0 €O

—ep (o (-9 Y EUT

n=1

=exp (9){1 + Z(S(Itl—)'e)n}

—exp (-6) { Z‘E ¢ (fl)le)n }

=exp (B) exp (BS ()
= exp (-0F (1)) (2)

Since S («) = exp (-0) and F («<) = 1, then Eq. 2 is an
umproper survival function. Therefore, the cure fraction 7
can be defined as follows:

=5 () =P (N=0)=exp(-6) (3)

As B—o, 10, whereas as 0—0, t—1 (i.e, O<m=]).
Tt should be notified that the first derivative of S (t)
with respect to t is:

% =0f () exp (-BF (1))

Since 1-3 (t) = F (t) and accordingly:

ds
-2
m (t)

then ds/dt is an improper survival function and therefore,
f (t) is an improper probability density function as well.

MATERIALS AND METHODS

Suppose that T is a random variable with probability
density function f (t; 6), 0 to be estimated and t, t,, -, t,
15 a random sample of size n. We are mteresting in the
likelihood function using the left censored data, because
it gives us the possibility to compute the Maximum
Likelihood Estimates (MLE) in order to fit a model for
censored data. In order to analyze such data let ¢; and ¢;
are indicators for the left censoring and cured,
respectively where for the ith patient:

1:Otherwise

(xl

0 :Censored 0 :Cured
= . ande =
1: Otherwise

If ¢, = 1, then ¢, = 1 but if ¢, = 0, then ¢, 15 not
observed and it can be either one or zero, assuming that
censoring is independent of failure times.

In parametric maximum likelihood method the
cumulative distribution function F () and the probability
density function £ () for the entire population are known.
Thus, given ¢; and ¢ (1.e., the complete data are available),
then the jomt probability density function can be written
as:

L(tl,tz,---,tn;e):ﬁf(ti;e) )
i=1

Consequently, the complete log likelihood function
15!

L=log [ TICE, () 0-m)° [ (0~ -5, 1]
)
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where, f, (t) and S, (t) are the p.df and the survival
function for the uncured patients, respectively.

This study considers the exponential distribution for
S, (1) and £, (t,) such that:

S, (D =e*andf, (t) = Ae™™

A datum t, 1s said to be left-censored if the event
occurs at a time before a left bound but it is unknown
when it happens, for example, when the date of starting a
cancer clinical trial 15 assigned but for a cancer patient we
don’t know when the patient has been died. However, in
case of left censoring the survival function of the uncured
patients becomes S, (t) = 1-¢™".

Therefore, the log-likelihood function becomes:

1 =tog TTIh. ™01-¢ ) 1 [fe ) {1-e ) - ey |

i=1

= Ylog [t A e [+ P dos [ (- 1 ey [
i=l i=1
=Y ¢, [ logh— () +log(1—e ) [~ 0¥ (1 - )1 —c)+
i=1 i=1
Yo (-a)log(1-e ) +log(1-e™)]
i=1

:loglialci 7K§nltloﬂici - Gzn: (I-o)d-c)+
i=1 i=1 i=1

log[(1—¢) Se, (1 alog(1 - e™)] ©

i=1
The solutions of:

al

{3

90

and:

al

c _

e

are the desired estimates of 8 and A, where,

dl = 1 = 7
ag:—ga—al)a_cl){ea71]&:0 @

i=1

ol _2?:1 oL C

{5

O : t (&)
— toc + {l—a) —2— [=0
ey e W TR M a,>{em_1]

Solving Eq. 7 implies:

O-log| 1% ©)
S dmayd-cy

While Eg. 8 can be solved numerically since no
explicit solution can be found.

As the cure status ¢ is not fully observed, the
Expectation Maximization (EM) algorithm will employ.

Before implementing the EM algorithm, let’s define
g; as the expected value of the ith patient to be uncured
conditional on the current estimates of ¢, and the survival
function of wncured patients, S, (t) (Peng and Dear,
2000):

grow(log){ [1-e1S, (&) } (10)

[e7]+[1-e7]8, (t)

For censored individuals ¢, = O and hence the
equation giving g; can be re-written as follows:

_ [l_e_a]su (t1)
S -e1s, )

_| -efld-e™)
BICR R (R

For simplicity, let p, to be the probability of cured
patients such that p, =E (1-¢) = 1-g;:

| eetae™
e et

1
_L+[e8 1](1e”‘)}
THE EM ALGORITHM

EM algorithm is an iterative optimization method
which alternates between performing an Expectation (E)
step which computes the expectation of the log-likelihood
function using the current estimate for the latent variables
and Maximization (M) step which computes parameters
maximizing the expected log-likelihood found on the E
step. These parameter-estimates are then used to
determine the distribution of the latent variables in the
next E step. The EM algorithm (and its faster variant
ordered subset expectation maximization) 1s widely used
in many different fields, especially in data clustering
in machine learmng, computer vision and medicine
(Liu et al., 2006b; Safarinejadian ez al., 2009).

However, suppose that the data vector 1s in the form
of (t, &;, ¢;). For i =1..n, the observed data is the lifetime
(t) and censoring status (¢;= 1) for 1 = 1-n and also the
cure status (¢, = 1), 1 = 1..m while the unobserved data is
the cure status (¢,) for 1 = (m+1)-1n, ¥m=n.
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In the presence of unobserved data (¢), only a
function of the complete-data vector is observed.
However, m the E-Step we find the expected value of the

log likelihood function given by Eq. 6 as follows:

E(, /e, ¢t )=mlogh— ?»Et —82(1 ¢ )+mlog(l—e®)+

i=m+

log(l—e™ 2 c + 2 ¢, log(1—e™)

i=m+l i=m+]
E (1-¢,), 2 E log(1—e™
i=m+1 i=m+l i=mel

are the sufficient statistics for the parameters vector
(A, OO

Tt follows that the log-likelihood based on complete
data is linear in complete data sufficient statistics and
then the E-step requires the computation of

f - 3e)

Em[ 2 ¢ log(l— e“‘)}
i=m+1

Let:

E{ 3 <1c1)J<nm)(pl)

_ 1 (1)
(nm)LJr[ea—l](l—e”iJ

_ Y e e Ynpi= S S S
SE[ECJEU pls e {1 1+[e971](17e*ﬂ}

i=m+1
(12)
SaEl,e{ E ¢ log(1-e™) J 2 I-p1t
i=m+l i=m+l

R 1 (13)
P {llﬂee—l](l—e%)}i

For the M-Step we can use the complete data
maximum likelihood estimates of (A, 8) given by Eq. 8 and
9 and then substituting the expectations derived in the E-
step for the complete data sufficient statistics, such that
on grounds of the sufficient statistics, the maximum
likelihood equation of 6 implies:

tHl _ Z"1n=1 Ci
0 =log| . — ———
EL-o)1-¢)

=1lo E1IC1+E1 el S +1
T R 0o P e (- (- o)

14
log{mgszﬂ} (14)

1

While Eq. 8 could be re-rewritten as follows:

i

BE I—EEHE ¢ (1- oc)[

i=m+l

T‘ t(1- p)+2 (-p)(- oc)(

J 0 (15

Thus, the E-step involves evaluating the sufficient
statistics given by Eq. 11, 12 and 13 and also p; using
some initial values for the parameters (0°, 4°) followed by
M-step involves substituting these values m Eq. 14 and
solving Eq. 15 numerically with respect to A. The
convergence t* iteration is our desired estimates of 6 and
A and eventually the desired cure fraction is exp (-6").

CONCLUSION

We investigated the maximum likelihood estimation
methodology for cure rate estimation based on the
bounded cumulative hazard model when the exponential
distribution can be used to represent the survival function
of the uncured patients. A novel development of the EM
algorithm was used to obtam maeximum likelihood
estimates when the data set has some left censoring
observations.
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