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Abstract: Tn this study, the existence of a quantum constraint on the communication process between quantum
systems 1s reviewed. This constraint 1s in the framework of holographic principle. It 1s shown that there 1s an
interesting relation between the holographic bound and the maximum flux of quantum information.
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INTRODUCTION

Quantum coherence and quantum communication are
the subject of much nteresting works (Tittle and Weths,
2001; Rowe et al., 2001; Schmidt-Kaler et al., 2003;
Leibfried et af., 2003, Mandel et al., 2003; Julsgaard et al.,
2001). An mmportant subject in quantum nformation
processing is existence of limits on the quantum
coherence. This limit may be due to spontanecous
symmetry breaking (Van Wezel et al., 2005). In fact, the
quantum communication is the art of transferring quantum
states (Tittle and Weihs, 2001) or quantum bits of
mformation. In this letter, we obtain a quantum constraint
on a communication process between the quantum
systems. Singer (1961) gave two derivations of the
quantum channel capacity for noiseless charmels. One
derivation was based on the time-energy uncertainty
principle and the second approach, however, was
criticized by others (Bekenstein, 1981; Landauer, 1982)
combined the classical Shannon capacity approach with
the quantum noise approach. Neither gave the correct
coefficient i the quantum chamnel capacity but both gave
the correct dependence I_«(p/h)”* Stem (1960) and
Marko (1965) had a similar measure of success by other
approaches. The thermodynamics derivation of quantum
capacity is considered by Lebedev and Levitin (1963) and
further described by Bekenstemn and Schiffer (1990) in
details. Pendry (1983) studied the chammel and the
carrying field and the related description of signals, unlike
Shannon, was quantum one. Each possible signal 1s
represented by a particular quantum state of the field. A
case in point is provided by the bundle of electromagnetic
charnels which an astronomer acquires the mformation
about a supermova explosion in a distant galaxy. However
the transmitting channel is affected by noise that limits

the receiver’s ability to recover the encoded mformation.
Because the noise has introduced a further measure of
uncertainty the received signal is associated with larger
entropy than the transmitted one. However, as proved by
Shammon, elimination of errors upon reception 1s
guaranteed only 1if the information 1s not transmitted too
fast. In fact, every physical channel is characterized by a
capacity which represents the maximum rate
{in bites sec™") at which the information can be
transmitted through 1t with negligible probability of errors.
Note that the entropy at the receiver is maximized when
the total received signal was itself Gaussian. In this letter
we show that a consistent description of mformation
transition rate may be given in terms of holographic
principle. Tt is shown that the holographic bound can be
interpreted as a bound on the transition of information
between quantum systems. In continue an interesting
relation was found between the holographic bound and
the maximum of the information flux.

HOLOGRAPHIC PRINCIPLE AND
CHANNEL CAPACITY

Consider a 3-D) region with size L, volume V~1.” and
energy E (we use the natural units h =k = 1). Based on
the uncertainty principle, the mmimum energy of a particle
localized inside the region will be E,;, (L) = 1/L (This
relation is obtained from E=cAp and the Heisenberg
uncertainty principle) this i1s a quantum energy of the

region. The maximum number of particles mside the region
could be:

E
= = 1
N, D EL (1)

Corresponding Author: A. Farmany, Department of Chemistry, Faculty of Sciences, Arak Branch, Islamic Azad Umniversity,

Arak, Iran

2883



J. Applied Sci., 11 (16): 2883-2885, 2011

and the Boltzmann entropy of the system is S = logQ (N
where the mumber of microstates is given by £ (N) = 2"
(Note that for a simple system i which each degree of
freedom has just two states and no degeneration of the
levels). If the munber of particles 13 bounded, we obtain
an upper bound on the entropy as:

Sue<PEL = BN, .. 2

where, P is a constant. The uncertainty in the position of
a particle during the interacting with a photon (that
radiated to localize it) is given by AxAp=1. This relation
doesn’t consider the gravitational interaction between the
particle and photon. Note that in the low energy limit, the
gravitational interaction between two particles 1s
neghgible but at high energy regime this mteraction 1s
more and more important. The gravitational interaction
between a particle (electron) and a photon 1s
calculated in details by Adler and Santiago (1999),
Farmany and Dehghani (2010), Farmany (2010),
Farmany et al. (2007, 2008), Farmany (201 1a, b) and
Farmany et al. (2011). This derivation corresponds to an
uncertainty in Ax inside the region of size L. the results
show that due to the gravitational interaction, the
uncertainty in localization of a particle is given by
Ax=CGAp/c’. Combining the gravitational and quantum
uncertainty we obtain, Ax=1/Ap+GAp/c’. Defining:

Lyws =VG/ &
we obtains the generalized uncertainty principle:

AX = ALP+ B o AP (3)

Our problem is related to obtain the maximum entropy
of a bounded region of space. This bound acts as a
holographic bound (Hooft, 2000; Susskind et al., 1993,
Susskind, 1995; Bousso, 2002; Gell-Mann and Hartle,
1995; Hartle, 2004; Maldacena, 2003; Ivanov and
Volovich, 2001).

Consider particles within a region with size L and
minimum energy E . (L)=cAp. Starting from (3) one
obtains:

B (L)L B, (L) +1<0 (4

Solving (4) we obtain the minimum energy as:

E,. ()=~ L"[%— %,/1 @7 &)

Inserting Eq. 5 into Eq. 1 we obtains the maximum
mumber of particles within the region of size I and
energy B

2EL (6)

Nmax:i
1-yfl-@/Ly

Since the number of microstates is 2"= and the
maximum entropy 1s:

2BEL )

§ = A
M@y

The maximum information of a signal may be related
to energy E and time duration t. Our calculations are
related to the channels which transmit the massive
quanta. In order to maximize the mformation flux, we focus
on the broad band channels and exclude any frequency
cut-off and its associated length:

L.=fE 1 ()

Because 1., is dimensionless, so f (E, 1) may
be a dinensionless combination of E and t. So we can
write:

L. = (ET) (9

One can set a holographic bound on the channel
capacity depending only on the maximuim signal entropy.
The frequencies that can appear are bounded to 1/T and
contain a noise which may be calculated by employing the
energy-time uncertainty relation for a signal with duration
time T.

ELin (1) is the lowest quantum energy level and AE is
the smallest energy separation between levels beneath
E (L). The total number of occupied levels is obtained
from Eq. 6 and the total number of configurations is
bounded from above by the number of configurations of
a system composed of M, = E/AE, where M., 15 the
number of Bosons distributed among N, ... Substituting
the holographic bound on E_;, and N equating S, with
the peak mformation (signal) and covering to bits we
obtains:

L 10
s 550 (10)

This argument is only valid for large N and
makes use of the popular
holographic bound for communication and information
theory.

version of the
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CONCLUSION

Tt is interesting that a holographic bound can be
applied to the channel capacity depending on the
maximum sighal entropy. The frequencies that can appear
are bounded to 1/t and contain a noise which may be
calculated by employing the energy-time imcertainty
relation. It 1s shown that the holographic bound can be
mterpreted as a bound on the transition of information
between quantum systems.
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