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Abstract: The requirements needed for an effective and proficient watermarking system is application
dependent. However, robustness and image quality (imperceptibility) are fundamental requirements for
applications that deal with image watermarking. The major factor that affects the robustness and imperceptibility
is the watermark embedding strength. Tn this study, a CVNN based adaptive technique of estimating watermark
embedding strength for a digital image is presented. Experimental results indicated that CVNN based method
can estimate the watermarking strength, gives a better correlation and an improved imperceptibility of the
watermarked 1mage. It also demonstrates that the detection 1s enhanced. The use of this new method in
watermarking achieved content authentication and helps overcome the problem of visual artifacts and

distortions created during watermark embedding.

Key words: Complex valued neural network (CVNN), digital watermarking, fast fourier transform (FFT)
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INTRODUCTION

The effectiveness of a digital watermarking process
is  appraised according to the properties of
imperceptibility,  robustness, computational  cost,
capacity/strength, false positive rate, recovery of the
watermark, the speed of embedding and retrieval process
(Cox et al, 1997, Tin and Wang, 2007, Koz and
Alatan, 2002; Zeki and Manaf, 2011). These evaluation
criteria are application dependent, given that diverse
application will have different requirements, therefore
there is no unique set of requirements that all
watermarking techmque must satisfied (Swanson ef al.,
1998). On the other hand, researchers have highlighted
that the principal requirements for an effective watermark
are imperceptibility, robustness to attacks and
strength/capacity of  watermark.  Hence, good
watermarking algorithm should reach a balance among
these requirements (Jin and Wang, 2007).

Visual quality (imperceptibility) of watermarked media
is  most important requirement in watermarking
(Katzenbeisser and Petitcolas, 2000). It refers to the
perceptual transparency (also known as fidelity) of the
watermark (El-Gayyar and Von Zur Gathen, 2006,
Wu et al, 2011), that is, the watermarked media is
indistinguishable from the orignal signal. A watermark
embedding procedure i1s truly mmperceptible if Human
Visual System (HVS) cannot distinguish the original data
from the watermarked counterpart (Yang et al., 2008;
Abdulfetah et al., 2009, Phadikar et ai., 2007). In this case,

a translucent image is overlaid on the primary image which
allows the primary mmage to be viewed, but the watermark
13 hidden to human eye detected
algorithmically.

Robustness of watermark is the ability of the
watermmark to be resilience to distortion. That 1s, to detect
the watermark, after the watermarked data has passed
through some signal manipulations (Olanrewaju et al.,
2010). The signal processing operations, for which the
watermarking scheme should be robust, varies from
application to application as well. The exact level of
robustness an algorithm must possess cannot be
specified without considering the application situation
(Cox, 2008).

Watermarking embedding strength 1s to analyze the
limit of watermark information that a host signal can
accommodate while satisfying the imperceptibility and
robustness of watermarking (Wong and Au, 2003).

Most of the previous works on watermark embedding
capacity/strength (Barmi et al, 2002; Moulin and
O'sullivan, 2003; Ramkumar and Akansu, 2001;
Servetto ef al, 1998, Priya and Stuwart, 2010;
Abdulfetah et al., 2010) focused on either directly
application of Shannon (2001) or Costa (1983) a
well-known channel capacity bound.

Recently, the use of Artificial Neural Network (ANN)
in estimating the watermark payload has improved the
previous studies. Zhang and Zhang (2005) studied the
bounds of embedding capacity in a blind watermarking
algorithm  based on Hopfield neural network

but can be
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They found that the basin attractor of neural network
attractor and hamming distance
determine the maximum watermark payload. Mei et al.
(2002) modelled Human Visual System (HVS) using Feed
forward ANN-based image-adaptive method in order to
decide the watermark strength of DCT coefficient. Their
technique allows selection of the biggest coefficient to
determine the watermark strength. Jin and Wang (2007)
indicated that in using ANN, different textural features of
each DCT block and luminance of an image can be
mnplored to decide adaptively the watermarking
embedding strength. Similarly Zhi-Ming et ol (2003)
defined a RBF neural networks based algorithm that
control and create the maximum image-adaptive strength
watermark.

In general, ANN-based capacity/strength estimators
are well suited for either phase or magnitude of the image,
that is, real-valued neural network RVNN which does not
work well with complex values. However, to preserve loss
of information during embedding, both phase and
magnitude of the image is used and this requires a
complex valued neural networlk. Hence, a new CVNN
algorithm that determines the embedding strength in order
to iumprove the watermarked image mnperceptibility 1s
developed.

can be use to

MATERIALS AND METHODS

When a watermark is applied at equal strength
throughout an image, it will tend to be more visible in
texturally flat regions and less visible in densely textured
regions. In order for the embedded watermark to be more
robust against different types of attacks as well as avoid
visual artifacts created due to uneven embedding, it 1s
essential to embed watermark in a Safe Region (SR)
(Olanrewaju ef al., 2010). In other words, users would like
to insert the watermark with maximum strength to avoid
being conspicuous to the Human Visual System (HVS). In
this case, local frequency content 1s use to determine the
texture of the image for identification of embedding region
while CVNN is used to decide adaptively different
watermark embedding strength according to diverse
textural features of each block and luminance in the host
image. Figure 1 shows the block diagram of the proposed
CVNN strength estimate. Tt consists of a four stage
cascade system.

Local frequency content: Spectra analysis 1s use to
express the correlation of the spatial location and the
frequency distribution of the image. From it, the local
variation of the frequency contents of each block can be
known which in turn enables to identify the changes in

CVNN for
|+ watermark |-»
strength

‘Watermark

frequency embedding detecting

Fig. 1: Block diagram of CVINN base strength estimate

the frequencies of the image as a whole. Frequency
domain, such as Fourier Transform contains mformation
from all parts of the image. When the image is segmented
into non-overlapping blocks, the local frequency content
of each block can be defined by computing its Fourier
Transform. The general model for obtaining the local
frequencies from an image T (x, y) of size M by N for
example (8x®) using the fast version of Discrete Fourier
Transform (DFT) 1s represented by F (u, v):

F(u,v):Mz_:l El(x,y) cﬂh[%+%] (N

x=0y=0

forx=0,1..M-1,y=0,1..N-1,
Thus given F (u, v), I (%, y) can be obtained back by
means of the Inverse 2D DFT (2D IDFT),

1 M-l N

I(X,Y):m 2

x=0y=-

F{u,v) eﬂn [%+%} (2)

=

where u, v are frequency variables and x, y are spatial
variables.

Moving from one textured region to another, the
frequency contents of each block changes. The difference
in the frequency content of each block is then used as a
means of segmentation. Though there is still needs to
refine the Fourier descriptors from the frequency content
of each block. In this case, the mean of DC component or
zero frequency term F (0, 0) is compute using Eq. 3:

F (0,0):%%5{ (0,0) (3)

where, F (0, 0) 1s the zero term (DC coefficient) of kth FFT
block, N is the number of blocks in the host image.

Complex valued neural network (CVNIN): CVNN is use to
process Complex Valued Data (CVD). It 1s made up of
Complex-Valued Feed Forward (CVFF) and Complex
Back-Propagation (CBP) algorithm. The block diagram of
CVFF and CBP is as shown in Fig. 2. CVNN has been
studied and developed by authors in seolving various
problems (Aibinu et al., 2010, Hanna and Mandic, 2003,
Hirose, 1992, Kim and Adali, 2001, 2000, Leung and
Haykin, 1991 ; Amin and Murase, 2009).
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Fig. 2: Complex Valued Feed Forward (CVFF) and
Complex Back-propagation (CBP) algorithm

The CVFF begins by summing up the weighted
complex-valued inputs in order to obtain the threshold
value which will be used to represent the internal state of
a given input pattern. All the complex mput are computed
based on the complex algebra which results into a complex
output through complex weights. While the CBP algorithm
performs an approximation to the global minimization
achieved by the method of steepest descent (T.eung and
Haykin, 1991). The net input/output relationship is
characterized by nonlinear recursive difference equation
given by:

1
Net.= Y X. W +b 4
. (Wb,
1=1

where, W;, 1s the complex synaptic weight connecting
complex-valued neurcn j in input layer to hidden layer, X
isthe complex input signal from input layer, j is the No. of
neuron n mput layer and b 15 a bias value
(complex-valued) of neuron 1.

It 15 applied to fully complex multilayer perceptron
consisting of many adaptive neurons, that are capable of
universally approximating any complex mapping with
arbitrary accuracy and  they  converge  almost
everywhere in a bounded domain of interest (Kim and
Adali, 2003, 2000).

The CVNN error to be propagated backward 1s
defined as the difference between the desired response d
(n) and the actual output v (n):

e (n) = [dy (n) + id; (n)]-[y (0) + iy, (n)] )

where, [dg, (n) +1d, (n)] the desired complex 1s valued data
and [y (n) + 1y, (n)] 15 the output of the CVNN. The CBP
algorithm mimmises the error function e (n) by recursively
adjust the weights and threshold values based on
gradient search techniques. Therefore, the global
instantaneous squared error is B (n) is given as:

E(n):%g e’ :Ee(n)e*(n) (&)

where, e* (n) = e (n)-ie; (n) is the complex conjugate of
the error function. If the error between the probe pattern
and the trained pattern is less than the goal (defined by
user) or epoch, the CVNN will converse to the trained
pattern. Once the pattern is well trained, the CVNN can
reconstruct the original pattern from the degraded or
incomplete pattern.

Bounds of the watermark: Tn order to keep the visual
distortion to mimmum and to optimize the watermarking
methods, it 1s essential to consider the HVS when
developing a watermarking system. The HVS can be
modelled with three different properties; frequency
sensitivity, luminance sensitivity and contrast masking
(Mei et al.,, 2002). The sensitivity of human eye to various
spatial frequencies 13 determmned by the frequency
sensitivity. These frequencies are modelled by CVNN to
determine the maximum strength of the Fast Fourier
Transform (FFT) coefficients, that is, the coefficients to
embed watermarlk. The strength estimator 1s a CVINN block
base. Each block has a maximum level to be altered; this 1s
accomplished by choosing appropriate ¢ value during
training phase of the CVNN. The « is a multiplicative
factor that control imperceptibility and PSNR value of the
watermarked image. If altered too much it will affect the
imperceptibility of the watermarked image. Figure 3 shows
the architecture of the strength estimator depicting the
watermark strength while Fig. 4 indicates the steps in the
strength estimation.

The above CVNN watermarking strength model
shown in Fig. 3 1s use during embedding to decide
subjectively or objectively the embedding strength of
each block. For subjective adaptive strength estimating
option, user 1s allowed to choose the embedding strength
for each block. The CVNN strength estimate for each
block individually, using features of the block such as the
texture, background and each block will have its own
strength which indicates how much such block will be
altered. This technique enables the establishment of
watermarking capacity/strength bound as well as enables
the achievement of imperceptibility of watermark without
degradation. If no strength 1s allocated for any block
during embedding, the estimator will automatically set
such block strength to the default ¢ value. This 1s due to
the pre-defined threshold setting. For any block beyond
the threshold, the block will be skipped to the next block.
This is an indication that it is not all the block that
will be watermarked. If no strength 1s chosen, the
estimator assigns the entire block a default embedding
capacity of a.
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Fig. 3: The structure of CVNN based watermarking
strength

Read block of
host image, non overlapping

v

Compute local frequency content

v

Compute mean of DC term and
append to block image coeff.

Vectrise the block to form

(65x1)
v
» Input coefficients for CVNN
/ training

Maximum embedding
strength?

Watermarked strength

Fig. 4: Watermarking strength steps flowchart

For the objective option, « is a multiplicative factor
that control PSNR of the watermarked image just like the
subjective estimate. However, the training is model based
on Eq. 7 to decide the ¢ values:

ES: 0<uel (7)

Any block which gets CVNN output equal to 0 will be
excluded and this way not all blocks are modified which
also fulfil the idea of selecting blocks based on model.

The main idea in objective training is that those
blocks which have more features data (e.g., eye, nose)
should have more « and plain blocks having only

background or one colour should have less ¢ value. That
1s, modifications will be less 1 1mage with fewer features.
This type of traiming is basically called the adaptive
watermarking strength. Adaptive training is of advantage
in detector module. This is because the watermark
detector will not be disturbed even if some blocks are with
& = O since most of the blocks have =0, therefore the
watermark will be detected. In this way one is
distributing/spreading the watermark according to CVNN
model so that during embedding similar blocks will acquire
similar ¢ value for embedding. The ¢ value restricts the
number of points that can be modified in an image,
therefore, lLimit the capacity of watermarking and
subsequently, decides the watermark embedding strength.

Watermark embedding: This watermark is embedded into
the FFT coefficients, an 88 blocks of a host image. Tt is
a multiplicative embedding defined as:

M (m, ) =M (m,n) P (m,n)+ (1 +¢W (m, n)) (8)

where, M (m, n) and P (m, n) are the sequences of data
from the transformed magnitude and phase of the original
image, W (m, n) is the watermark sequence, « is a the
CVNN corresponding CVNN  factor controlling the
embedding strength and M’ (m, n) 15 the sequence of
watermarked.  The generated a
pseudorandom number generator using an integer as a
seed. This seed serve as a unique secret key for each

watermark 1

watermarked image which can be use as a detection key.
The watermark 1s embedded 1 SR by defining the
watermark as:

W Wmnform=01.M-1n=0,1..N-1, W (m, n)

0if (m,n)<o{m,nYor{m,n)>(l - o}(m,n)
or B (m,n)<{m,n)<(1-P)(m,n)
+1otherwise

where, « and P are the controlling parameters of
frequency regions to embed the watermarl. After
embedding using Eq. &, the mverse of DFT 1s applied in
order to obtain the watermarked mage.

Watermark detection: The detection is a blind detection
which does not requires the host image.

The detector model 15 as shown mn Fig. 5. The
modified blind optimum decoding and detection as in
study of Barni et al. (2002) and Khelifi et al. (2006) where
adopted in this study. The detector extracts the hidden
information without knowing it in advance.
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W Watermark
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—»Block of FFT
Host

image

Fig. 5: Watermark detector
The detector hypotheses as follows:

dt;; No watermark mformation is embedded into the
recewved umnage

dt;: Forged watermark mformation 1s embedded mnto the
received image

dt,; Correct watermark information is embedded into the
received image

The above detector analysis may be induced into a
binary hypothesis test (Briassouli and Strintzis, 2004)
where the two hypotheses concern the existence of a
watermark. Given a watermarked image T, the detector
aims at deciding whether I, contains a certain watermark
w,, or not. The watermark detection can be expressed as a
hypothesis test where two hypotheses are possible:

H,: Signal T,, host a watermarl w,
H,: Signal T, does not host a watermark w,

It should be noted that hypothesis (H;) can take two
case; either m the case that the host image I, is not
watermarked (hypothesis (dt;)) or in the case that the
signal I, 18 watermarked by forged watermark wk where
wk = wk (hypothesis (dt,)). Therefore, (dt;) and (dt,) are
mutually exclusive and their union produces the
hypothesis (H,).

The detector 1s validated using Eq. 9:

1 Nl

dtzﬁgglk 9)

It 15 mmportant to set the appropriate threshold that
mimmizes the number of false negative and false positive
alarms. In order to set an appropriate threshold, the
extracted watermark is correlated with a large number
(in this study 1200) random watermarks and the embedded
watermark.

RESULTS AND DISCUSSION

Watermark was created by embedding a unique bits
string sequence generated from each host image as a

——>
Detector  fwatermark

bits

present/not
Waterrmark image

Fig. 6(a-b): Host image Lena (a) and watermarked Lena
and (b) using randomly generated seed from
the host image

message n the host image (1image-dependent watermark).
Each host image has a unique watermark, that 1s, image
features were embedded into itself as an authentication
stamp. The colowr and chrominance information based
features of the image were extracted for the generation of
the watermark. The use of image dependent watermark
provides better security against fraud especially in tamper
detection system as compared to traditional (Fridrich and
Goljan, 1999).

In CVNN based embedding, two distinct features are
considered; the adaptive strength of the block and the
combination of both real and imaginary component for the
embedding. These features enable achievement of lighly
imperceptible and a robust watermarking system
especially against conceivable aftacks such as Wiener
filter, Gaussian noise and JPEG compression. The image
of Lena is shown in Fig. 6a and corresponding
watermarked Lena 1 Fig. 6b. The Peak Signal-to-noise
ration PSNR 1s 68.18 dB. It was observed that depending
upon the frequency variation of each block, the system
provides suitable imperceptible alterations according to
the frequency distribution of the block content. This
indicates that CVINN based embedding is adaptive in
which the embedding strength 1s based on the frequency
component of the block, hence a better mmperceptible
watermarked 1mage 1s achieved. Furthermore the retaming
of both real and imaginary component information during
embedding result in high quality of watermarked image
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Table 1: Comparison of watermark imperceptibility measure

Test image  Method/Reference PSNR (dB)
NN and HVS (Mei et al. 2002) 37.68

Lena NN in DCT (Jin and Wang, 2007) 40.97
Noise Visibility function, 31.87
(Zhang et af., 2007)
(Moulin and O'sullivan, 2003) 38.20
Proposed algorithm 68.18

Baboon NN and HVS (Mei ef ad., 2002) 37.96
NN in DCT (Jin andWang, 2007) 4521
Noise Visibility function (Zhang et ., 2007) 32.26
Chun-Hsien and Kuo-Cheng (2010) 42.00
Proposed algorithm 63.45

without visual distortion. Table 1 shows the comparison
results of the proposed CVNN based strength estimate
and other algorithms 1n terms of mperceptibility of the
watermarked image. This is accomplished by using PSNR
value between the original and the watermarked image
expressed in dB indicating the energy of inserted
watermark.

. PSNR is defined as:

255 dB (10)

+MSE

PSNR. , =20log10

Higher value of PSNR indicates that the two images
are similar.

Table 1 shows comparison results of the proposed
CWVNN strength estimate and other algorithms for test
image Lena and Baboon. Tt can be seen that for both test
images, the proposed CVNN based algorithm outperforms
other algorithms with a PSNR value of 68.18 dB for Lena
while other algorithms only recorded between 31-40 dB.
As for Baboon, CVNN based algorithm scored 63.45 while
others scored between 32-42 dB. This performance shows
that CVNN based method is about 40% superior to other
algorithms. Tt can therefore be deduce that the newly
proposed CVNN algorithm has significant improvement
over other algorithms in terms of imperceptibility measure.

Effect of varying watermark strength on imperceptibility:
The effect strength  on
umperceptibility 1s also considered. Varymng the watermark
strength, as well as host image used can sigmficantly
affect the visual quality of the watermarked image. This is
supported by the result obtained in Fig. 7. Imperceptibility
decreases as the watermark embedding strength 1s
increased.

For example, when « = 0.1, the PSNR for Lena is
observed at 68.18 dB as the increase to 0.5, the PSNR
decreased to 54.23 dB and finally reduced to 47.10 dB
when the strength soar to 1. Meanwhile, using same
embedding condition as the Lena above, however,

of varying watermark

704

— mLena
OFruits
60
50 ™ .
g 40
Z
% 304
20
104
0 T T T T
0.1 0.5 0.7 1.0
Watermark strenath
Fig. 7:Various  watermarking  strength  showing

Watermarked Tena and Fruits using randomly
generated noise from host image as watermark

changmg the host image to fruits, it 1s also observed that
as the strength increased, the PSNR valued decreases. As
shown; when ¢ = 0.1, PSNR is observed at 62.69 dB, as «
increased from 0.5 to 1, the PSNR decreased from 49.23 to
44.82 dB. The two comparisons indicated that the PSNR
obtained for Tena is higher than that of fruits for different
level of watermarking strength however same trend is
noticed m the increase of «. The lugher PSNR of Lena
could be due to the composition and complexity of inages
at each block which may differ from image to image. In
view of this, each block of each image will require different
embedding strengths and the embedding tume vary as
well. For Lena; as shown i Fig. 6, a mixture of
characteristics such as smooth background, composition
of her eyes while the hat has complex textures and big
curves which makes a great difference from ordinary
image with all at region. These characteristics concealed
the watermark bits better than at flat regions. Tt was also
noticed that for both fruits and Lena, as the watermarking
strength increases, there was a decrease mn the PSNR
value. This 13 an mdication that small watermarking
strength such as 0.1 produces best visual quality of
watermarked images; 68.18 and 62:69 dB for Lena and
Fruits, respectively. Based on the above results, it can be
concluded that 0.1 1s the best for batch tramed strength
selection. Furthermore, using host image generated
watermark will ensure that each image has a umque
watermark for detection.

Effect of watermark strength on various attacks:
Figure 8-10 shows the detector response for watermarked
pepper after Weiner filter, Gaussian noise and JTPEG
compression attacks. Figure 8 shows the detector
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Fig. 8: Wiener-Attack resistance detector
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Fig. 10: TPEG compression-attack resistance detector

response for 1300 watermark keys where only one seed
relates to the correct watermark. It 1s obvious that the

response to the true watermark is the largest and highest
peak at 1200. As for Gaussian noise attack resistance,
shown in Fig. 9, even though the received image may be
perceptually corrupted, the decoder was still able to select
akey at 1200 as a possible match with the one found and
detect it. From Fig. 10, it is observed that despite the
compression, the central peak obtamned is important
enough to conclude that the identified key 1s the one that
is sort for. It means that the decoder is able to detect,
upon the reception of the watermarked image. This is an
indication that the algorithm 1s robust to JPEG
compression hence the system 15 JPEG-resistant.
Consequently, the robustness requirement is met. It can
be concluded that the detector was able to detect the
watermark even after the attack; therefore the system 1s
robust against Wiener filter attack, Gaussian noise and
TPEG compression. For this reason, the system resistivity
against the conceivable attacks can be concluded that the
strength used for embedding are adaptive hence
imperceptibly and robust system 1s achieved.

CONCLUSIONS

This study presented a blind watermarking algorithm
based on FFT-CVNN and discussed the watermark
embedding strength. We argue CVNN is an adaptive
watermark strength estimator which enables a decisive
amount of watermark to be safely embedded in host image
without causing visual distortions, this claim is supported
by simulation results. The superiority of the CVNN based
strength estimator 1s verified among other compared
algorithms, simulations showed that the newly proposed
CVNN based yields superior performance (over other
algorithms). It 15 also pertinent to note that, watermark
imperceptibility was highly influenced by the type of
image, frequency compenents, traming parameters and
strength of the watermarle. The smaller the CVNN alpha
() controlling value the better the watermark
imperceptibility. When the alpha value becomes bigger
the CVNN watermark strength goes out of bound hence
Network cannot retrieve the original image correctly.
Therefore, the CVNN alpha value restricts the number of
points that can be modified m an image. Furthermore, the
performance of the algorithm under various conceivable
attacks indicated that the proposed algorithm is robust to
conceivable attacks.
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