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Abstract: Power system security assessment based on the concept of risk is required in the current power
environment. In risk based static security assessment, the likelihood and severity of security violation are the
two main factors that determine the security level of a power system. The objectives of this study was to
perform a feasibility study of non-sequential Monte Carlo in probability estimation of contingency and provides
an indepth interpretation of risk index value by classifying the risk into low, medium and high risk operating
point. The probability
non-sequential Monte Carlo simulation. In this approach, the continuous severity function 1s used due to its

estimation of contingency that causes security violation is determined using

ability to capture both near violating and violating impact of a contingency. A risk classification technique 1s
also developed so as to provide a qualitative interpretation of the risk index value by classifying the risk as low,
medium and high degree of risk. Implementation of the feasibility study of the proposed approach to determine
the probabilistic risk in risk based static security assessment using the non-sequential Monte Carlo simulation

and to classify the risk has been demonstrated on the IEEE RT S-96 test system.
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INTRODUCTION

Present power system’s interconnections are more
complex and its operation has also become complicated.
This condition makes it more difficult to monitor and
handle power system since the actual power system
operating conditions are difficult to predict. In addition,
the unprecedented changes in the world’s technology
have also changed customers’ expectation towards
availability i the electricity supplies. For example,
momentary events that have gone unnoticed a few years
ago are now of utmost importance and cannot be
neglected. A few seconds of interruption may cause
millions of profit loss due to the mcreased level of
dependency on electricity supply in our daily activities.
The increase in today’s world density population has also
forced power systems to operate under increasingly
stressed condition and close to thewr limits. As a
consequence, power systems become more heavily
loaded and vulnerable to disturbances, hence, putting the
security of power systems at risk.

Power system security refers to the degree of risk n
its ability to survive imminent contingencies without
interruption of customer service (Kundur ez af., 2004). Tt

relates to robustness of the system to 1imminent
contingencies and hence, depends on the system
operating condition as well as the contingent probability
of disturbances (Kundur et al., 2004). The security of a
power system can be violated when it 1s subjected to
contingencies, such as outages of lines and load
variation. In the conventional power system security
assessment, determimstic security limit 1s usually referred
to as a worst case scenario. This somehow restricts the
feasible secure operating condition and hence, himits the
economic potential and technical ability of power systems
to supply load (Morison, 2002). Furthermore, deterministic
approach does not provide mformation on the condition
of current operating point and the extent of security
violation (Wan et al., 2000), but only provides information
on whether the current operating condition is secure or
insecure (Mohammadi and Gharehpetian, 2008). In the
current power system environment, security assessment
with respect to deterministic security boundary region is
no longer relevant (McCalley ef al., 1999, 2004; Kirschen
and Jayaweera, 2007, Wan et al., 2000, Santo ef al., 2004).

Risk Based Security Assessment (RBSA) is a
relatively new approach that takes into consideration the
uncertainty introduced by an actual power system
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operating condition as well as the severity of security
violation should a contingency occur. The risk index
developed through RBSA can quantitatively capture the
probability of occurrence of each possible contingency
that may cause security violation and the impact of the
event. In general, the study of RBSA can be categorized
as risk based static security assessment and risk based
dynamic security assessment. Risk Based Static Security
Assessment (RBSSA) considers risk of equipment
overload and voltage limit violation whereas risk based
dynamic security assessment (RBDSA) considers risk of
voltage mstability and early swing transient mstability.
This study focuses on RBSSA that considers both low
bus voltage (V) and line overload violation (L.O) as
security limits.

A considerable amount of research has been done in
determining the risk of line overload in power systems in
which the first work began in 1994 (McCalley et al., 1999).
In reference (McCalley ef al., 1999), a predefined list of
transmission line outages in the order of N-1 13 considered
when calculating the risk index value. A comparison was
made between risk based and deterministic security
assessments of power systems based on single criterion
contingency (Kirschen and Jayaweera, 2007). For
simplicity, the values of probability of line outage are
assumed in McCalley ez al. (1999) and Kirschen and
Jayaweera (2007).

A more comprehensive study on RBSSA of power
systems can be seen in McCalley et al. (2004), Ni et al.
(2003a, b). In McCalley et al. (2004), the risk index contour
plotted was obtained with a linited set of N-1
contingency. Online RBSSA was developed by Ni et al.
(2003a, b) to provide rapid online quantification of a
security level with an existing or forecasted operating
condition considering generator, transformer and
transmission line outages. In McCalley et al (2004),
Ni et al (2003a, b), the contingencies are assumed to be
Poisson distributed and hence Poisson probability
distribution function (pdf) 13 used to calculate the
probability of contingency occurrence with a given failure
rate.

A condition-based risk index for line overload and
low bus voltage based on the credibility theory employed
to model fuzziness of component outages with a given
probability of failure is developed (Feng et «al., 2008).
Another probabilistic technique that is applied in risk
assessment to determme the probability of voltage
collapse 18 by using the Monte Carlo simulation
(Arya et al., 2006). In the same reference, a comparison is
made between the Monte Carlo simulation and the radial
basis function neural network for RBDSA of power
systems. A risk index 18 used to quantify the degree of
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risk of the cwrent operating point but a qualitative
classification as to whether the risk 1s deemed to be low,
medium or high has never been done. This study presents
a new risk classification techmque to provide msight
information on the security level of current operating
point in RBSSA of power systems. Through risk
classification, the operating limit of power systems can be
clearly seen. This study also explores the feasibility of
using the non-sequential Monte Carlo simulation to
determine the probabilistic risk in RBSSA. The results
obtamed from the Monte Carlo simulation are then
compared with the calculated Poisson probabilistic risk.

RISK BASED SECURITY ASSESSMENT

Overview: Risk based teclmique has given a paradigm
shift towards security assessment. Risk and reliability
have the same implications in which an operating system
whose risk level 1s high 1s said to be unreliable and vice
versa. There are two important attributes m sk
assessment, namely likelihood and impact.

Risk is defined as the product of event likelihood and
its severity. It can be written as:

RISK (E)="Prob (E)=<Sev (E) (1)
where, E 1s event.

In RBSA, the probability of a contingency that can
cause security violation is termed as event likelihood.
RBSSA includes the assessment of risk of Low Voltage
(LV) and Line Overload (LO). In a given operating
condition the risk of Low Voltage (I.V) is equal to the sum
of mdividual’s contingency risk and it 1s given as:

RISK(LV) = iRJSKLv (E,)

@)

N

:Z (PROBG”:;) x SEVL, (E‘))

i=1

where, N is the number of contingency.

Similarly, the risk of Line Overload (I.O) is equal to
the sum of individual’s line contingency risk and it can be
written as:

RISK(LO) = ZN: RISK, (E))
" (PROB(E, )< SEV,, E,))

i=1

3)

Probability estimation: The probability distribution
function of transmission line outage is assumed as
follows (Chen et al., 2006):
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PROB(F,)=1-¢™ 4
where, A, is the failure rate of line k.

Using jomt probability distribution and assuming all
events are independent, the probability of N-1
contingency in a power system 18 derived as follows:

PROB(E,) = PROBE ~E ... nFy A F,)

5 _ (5
=PROB(E )] [PROB(F)

=i

Assuming a transmission line outage 1s an event that
15 collectively exhaustive (Yates and Goodman, 2005,
hence the following relationship 1s valid:

PROB(E,)=1-PROB(F) (6)
Substituting Eq. 6 into 5:
PROB(E,) = PROB(F,)li[(k PROB()) -

Equation 7 1s consistent with the poisson distribution
function used to determine the probability of contingency
i references (McCalley ef al., 2004, N1 et al., 2003a, b).

Severity function modeling: Severity finctions are
adopted to uniformly quantify the severity of network
performance for low voltage and line overload. Tn general,
there are three types of severity functions, namely;
discrete severity function, continuous severity function
and percentage of violaion severity function
(McCalley ef al., 2000). In this study, the continuous
severity function is chosen due to its ability to capture
the near violating and wviolating impact of security
violation (Marsadek ef al., 2009). The continuous severity
function for low voltage of each bus is shown in Fig. 1.

For each bus, its severity function evaluates to 1 at
the determirustic limits of 0.95 p.u and mcreases linearly as
voltage magnitude falls below the specified limit.
Therefore, the severity of low voltage for each
contingency can be calculated as follows:

SEV;y (k)= ZN:SEVLV () (8)
SEV,, (i,) = {20(0V| 1) )

Where:
1 = Bus number
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0.95 1
Volatge magnitude (p.u)

Fig. 1: Continuous severity function for low voltage

Sev
F 3
1
— >
90 100
Line flows as % of rating

Fig. 2: Continuous severity function for line overload

k = Contingency number
|V|= Bus voltage magnitude
N = Total bus

The continuous severity function for line overload is
shown m Fig. 2. For each circuit, its severity function
evaluates to 1 at its deterministic limits of 100% and
increase linearly as line flow exceeds the limit. Severity of
line outage for each contingency can be calculated as
follows:

SEV, . (K) = ZM; SEV,, (S,) (10)

s=l

10(P, - 0.9) for P, > 90%
0 Jfor P, < 90%

SEV,(S,) = { (11)

Where:

3 = Circwt number

k = Contingency number
P, = Percent of line rating
M = Total circuit number

FRAMEWORK OF MONTE CARLO BASED RBSSA

In RBSSA, risk evaluation is performed in order to
assess the overall risk of power systems when subjected
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to contingencies. There are two main stages in risk
evaluation process which mvolves selection of power
system state and calculation of state probability and
determination of nisk index value. The process of
computing the risk index value is a straightforward
process. There are two commonly used methods for
system state selection in a power system namely state
enumeration and Monte Carlo simulation (Li, 2005). In
state enumeration, system state is selected based on the
enumerated contingency list. However, 1t 1s not
computationally efficient to enumerate all possible
contingencies when the power system size is large. In
some extent, state enumeration process is very similar to
deterministic process (Rei and Schilling, 2008). On the
other hand, computational burden of Monte Carlo
sinulation does not depend on system size or complexity.
Monte Carlo simulation uses random event generator that
works by sampling a system state and it can be
categorized into sequential and non-sequential sampling.
Non-sequential sampling 15 adopted mn this study since,
it does not require chronological time dependant event.
The concept of non-sequential Monte Carlo simulation 1s
based on the fact that a system state is a combination of
all component states and each component state can be
determined by sampling the probability of the component
appearing in that state (L1, 2005). As a stopping criterion
in Monte Carlo simulation, the coefficient of variance, P,
1s often used.

Under the scope of this study, only uncertainty in
transmission line outage 1s considered. Probability
estimation using non-sequential Monte Carlo simulation
unplemented 1s performed by considering the followimng
steps:

Step 1: Imtalize counter w = 0

Step 2: Generate random column vector, R =|r,, 15, ... Ty,
| consisting N elements, where, N is the
number of transmission lines

Transform the evenly distributed random vector
R generated in step 2 mto exponential random
vector 7. = | 7, 7,, ... Zy,, Z,| using the following
relationship (Rubinstein and Kroese, 2008):

Step 3:

1
=1
L=y n(r)

i
1

Step 4: Determine vector Q = |q,, 9z Qui, Qu] that
containg status of transmission lines by
comparing each element in 7 with the respective
probability of failure, i.e.,:

i

0 (success) , z,>PROB(E)
1 (failure) ,0<z <PROB(E)

Step 5: Update counter w = w1
Step 6: Check if there 1s only one nonzero element in
vector Q, if yes proceed with Step 7, otherwise,
repeat Step 2
Step 7:  Obtain the value of P',using the following rule:
If q=1,thenP, =1fori=1, 2,......,
Step 8: Estimate the probability of line outage by using:
2P (12)
p=— Fori=1,2,...N
w
Step 9: Obtain coefficient of variation, P, which 1s given
by Arya et al. (2006):
- Vip) (13)
)
Where:
_V&X
(P,) - W

Vi(X)=+———  TFori=12..,N
W

Step 10: If p<E, terminate the Monte Carlo simulation,

otherwise repeat from Step 2 onwards
The value of £ selected is 0.04.
Step 11: Compute the relative error which 1s given by:

Poisson

- |proby, — prob

Error(% %100 14

Probyges,
where, proby. is the probability calculated from monte
carlo simulation, proby,,,, 1s the probability calculated
using Poisson pdf.

RISK CLASSIFICATION

The value of risk index quantifies the degree of risk of
the current operating condition. However, further
interpretation on whether the risk index value is deemed
to be high, medium or low has yet to be made. This study
explores on how risk classification can be made in RBSSA
and the proposed risk classification is shown in Fig. 3.

Figure 3 shows the plot of risk index values with
respect to the operating points. Points P, and P, indicate
the range of possible loading conditions in the acceptable
region. This acceptable region refers to the feasible
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operating condition before a power system becomes
insecure. From Fig. 3, the operating point, P, refers to the
load at base case condition whilst the operating pomnt, P,
refers to the maximum permissible load before the
operating point becomes unacceptable. Unacceptable in
this context means the operating point becomes insecure
even when all transmission lines are m service. The
acceptable operating point region is then divided mto
three equally spaced risks. Power system risk is classified
as low, medium and high if the risk index values are
between RI, and RI,, RI, and RI, and RI, and RI,,

Risk index
&
Unacceptable
region v
RL A
High risk
(HR}
RI,
Medium ri
(MR) Acceptaible
RI, Tegion
Low risk
RL |
h 4 A 4 Y
P, P, Load
Fig. 3: Rusk classification
At base case condition, perform
contigency anatysis and determine its risk
¥
[ Tncrease load at all load buses ]
¥
Run load flow with all transmission
lines in service

Security
violation?

Perform contigency analysis and determine
its risk index IR,

¥

Divide the risk space equally using
(RI,R1;)
3

RI, = R, +2 S50

.

r

RL =RI,+

.

Fig. 4: Flowchart for risk classification
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respectively. The implementation of the proposed risk
classification is described by referring to the flowchart
shown in Fig. 4.

RESULTS AND DISCUSSION

The proposed method for RBSSA is performed on the
[EEE RTS-96 (Billinton et al., 1999) in which the system
model consists of 24 buses, 35 transmission lines
including two parallel lines and 5 transformers as shown
in Fig. 5. The total real and reactive power load at base
case condition is 2850 MW + 1380 MVar. For contingency
analysis, only transmission line outages are considered
in the study. A two-state single repairable Markov model
1s assumed for all the transmission lines (Billinton and
Allan, 1994).

0O 0
ﬂl 13 Bus 21 Bus 22
M1 8]
32
31
28 » f [ 16 Bus 23
()—l * O
If IR
Bus 16 us 19
v Buazo o 2
24
230 kV
b 23
26 Bus 14 2 Bus 13
Bus 15 o
40

Fig. 5: IEEE RTS-96
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Table 1: Probability estimation
Line outage Probability of line outage

Line Frombus Tobus Poisson (x107¢) Monte carlo (x10~%) Error (%)

L1 Busl Bus2  4.58 4.71 2.76
L2 Busl Bus3 11.20 11.80 4.6

L3 Busl Bus5  6.60 6.55 0.65
I4 Bus2 Bus4  8.05 7.86 2.39
L5 Bus2 Bus6 1040 10.50 1.41
L6 Bus9 Bus3  7.80 7.49 4.06
L7 Bus4 Bus3 034 0.24 44.83
L8 Bus9 Bus4 731 7.71 5.14
L9 Busl0 Bus3> 683 7.07 3.38
L10 Bus10 Busé  6.60 6.59 0.11
L11 Bus7 Bus8 590 5.74 2.80
L12 Bus9 Bus8 932 9.51 1.91
L13 Bus10 Bus8 932 9.39 0.69
L14 Bus 11 Bus 9 034 0.26 31.67
L15 Busl12 Bus9® 034 0.32 7.28
L16 Bus 1l Bus 10 0.34 0.39 12.22
L17 Bus12 Busl0 034 0.33 3.45
L18 Bus 13 Bus11 830 8.62 3.79
L19 Busl4 Busll 805 8.04 0.14
L20 Busl13 Bus12 830 8.20 0.03
L21 Bus23 Bus12 11.50 11.80 2.2

L22 Bus13 Bus 23 10.70 10.60 0.52
L23 Busl6 Busl4 7.80 7.79 0.13
L24 Busl6 Busl> 6.60 6.55 0.65
L25 Bus 2l Bus15 855 8.64 0.99
L26 Bus 15 Bus 24 8.55 8.46 1.08
L27 Bus17 Busle 7.07 7.09 0.35
L28 Bus19 Buslé 683 6.89 0.91
L29 Bus18 Busl7 636 6.51 2.21
L30 Bus22 Busl7 1210 12.20 0.71
L31 Bus18 Bus2l 7.07 7.04 0.49
L32 Bus19 Bus20 7.80 7.98 2.23
L33 Bus23 Bus 20 6.83 7.02 2.74

Probability estimation: To generate uniform random
vector as stated in step 2 of the Monte Carlo simulation,
the Excel program which has a built-in random number
generator is used. Table 1 shows the comparison of
probability estimation generated by using the Monte
Carlo simulation and Poisson for N-1 contingency of
transmission line outage.

From Table 1, it is shown that the probability
estimation of  contingency determined  using
non-sequential monte carlo provide small percentage
different when compared with the poisson distribution
function. In most cases, the percentage different was
found to be witlun 0.01 to 5% except for line outages of
lines L7, 114, 115 and L16. As can be seen from both
Poisson and Monte Carlo sinulation result these 4 line
outages have the lowest probability of outage, therefore
small discrepancy will cause n a large relative error.

Severity function value: The continuous severity
functions values shown in Fig. 1 and 2 are calculated
based on the test system post-contingency performance.
To obtain these values, line outage simulations are carried
out using the Power System Analysis Toolbox (PSAT)
(Milano, 2003). From the outage simulation results, a
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uLO
oLv

Severity of line overlead and low voliage base case

Severity

Fig. 6: Severity function value for line overload and low
voltage at base case

HLO

v Severity of line overload and low voltage base case
[=]

Fig. 7: Severity function value for line overload and low
voltage at maximum permissible load

database consisting of bus voltages and line flows 1s
formed and the severity functions are calculated using
Eq. 9 and 11. The severity function value provides
information on whether any particular contingency causes
near violation or violation in static security. If the low
voltage severity function wvalue of a particular
contingency is non zero, it denotes that at least one or
more bus 1s having voltage magnitude of less than 0.95
pu. However, if the line overload severity function value
of a particular contingency is non zero, it means that the
line flow exceeds its 90% rating. The severity function
values for line overload and low voltage at base case and
maximum permissible loads are shown mn Fig. 6 and 7,
respectively.

At base case condition, line outage, 1.5 which is the
transmission line comnecting bus 2 and bus 6 has the
highest line overload severity function value. This implies
that 1.5 is the most severe contingency that causes line
overload at base case condition. On the other hand, the
outage of line connecting bus 10 and bus 6 (L10) 15 the
most severe contingency m low voltage violation. From
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Fig. 6, it is also noted that at base case condition, the
severity of low voltage is more prominent compared to
line overload. All the line outages at base case condition
cause near violation or vielation in low voltage while only
4 line outages (1.5, 1.7, L8 and 1.26) cause near violation or
violation in line overload with their severity values much
less than low voltage severity value.

The maximum permissible load for line overload and
low voltage is 30 and 40% increase in load from base case
respectively. At maximum permissible load, outage in 1.11
cause severe low voltage violation since its low voltage
severity function s the highest. As can be seen from
Fig. 7, outage in L5 is no longer the most severe
contingency for line overload given that line outage of
L18 has the maximum line overload severity function
value. In general, at maximum permissible load all line
outages cause near violation or violation in static
security. In addition to this, severity function values for
both line overload and low voltage at maximum allowable
load increase tremendously when compared to base case
condition.

Risk index classification: The risk ndex values at various
load conditions for low voltage and line overload are
shown in Fig. 8 and 9, respectively. In this study, the risk
index is calculated at every 5% increase in load from base
case until it reaches its maximum permissible load.

In general, the risk index curve for low voltage shown
in Fig. & depicts an increasing pattern of risk index with
respect to total load demand. The risk classification result
shows that the operating point 1s categorized as low risk
when load 1s mereased not more than 20% from base case.
The operating point is in medium risk when load is
increased from 20 to 30% of base case load. When load 1s
increased at greater than 35% of base case load, the
operating point 1s classified as high risk because the load
margin between the current operating and maximum
permissible load becomes very small. The power system
1s considered to remain in the acceptable region if the load
does not exceed 40% mcrease {Tom base case load.

A similar interpretation as low voltage risk can be
made to risk of line overload in the test system. From
Fig. 9, it 1s noted that the power system should not be
operated at loads greater than 15% mncrease from base
case load in order to remain in the low risk region. At 20%
increase in load from base case, the power system is said
to operate in the medium risk region. When, load 1s
mcreased to 25% from base case, the operating point 1is
classified as high risk because the load margin between
the current operating and maximum permissible load
becomes very small. The maximum permissible load for
line overlead 1s 30% mcrease from base case load, which
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Fig. 9: Risk index for line overload

15 10% less than the maximum allowable load for low
voltage. Thus, the power system 1s said to be at greater
risk towards line overload compared to low voltage when
load 1s increased from base case to its maximum allowable

load.
CONCLUSION

The application of Monte Carlo simulation for
estimating the probability of contingency in risk based
static security assessment has been presented and shown
to provide a new approach for calculating likelihood in the
occurrence of contingency. The selection of appropriate
coefficient of variance 1s very important when rumung a
Monte Carlo simulation. Large value of coefficient of
variation may lead to poor error, whereas small value of
coefficient may result i unnecessary computational
burden For the study made on the IEEE RTS-96 test
system, a coefficient of variation of 4% is sufficient to
result in a reasonable computation error.

The proposed risk classification techmque has the
ability to qualitatively interpret the numerical values of the
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risk index. However, the risk index classification depends
on the type of security violation considered which may be
either low voltage or line overload violation. From the risk
classification results, the maximum permissible load in low
voltage is different than the maximum allowable load in
line overload. Tt is shown that the power system may
operate at a high line overload risk but still in the medium
low voltage risk region.
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