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Estimation of P (Y<X) in the Rayleigh Distribution in the Presence of k Outliers
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Abstract: In present study, we considered the problem of estimating R = P (Y<X), where Y had Rayleigh
distribution with parameter A and X had Rayleigh distribution with presence of k outliers with parameters 6 and
B, such that X and Y are mdependent. The moment, maximum likelihood and mixture estimators of R are derived
and had been shown that the moment estimator of R is asymptotically unbiased estimator. At the end, we

concluded that mixture estimators are better than the maximum likelithood and moment estimators.
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INTRODUCTION

In reliability context mferences about R = P (Y<X),
where X and Y independent distribution, are a subject of
interest. For example in mechanical reliability of a system
if X 1s the strength of a component which 1s subject to
stress Y, then R 1s a measure of system performance. The
system fails, if at any time the applied stress is greater
than its strength. Stress-strength reliability has been
discussed by Kapur and Lamberson (1977). Some other
aspects of inference about R are given in
Al-Hussaini et al. (1997) and Sathe and Dixit (2001) have
been estimate of R = P (Y<X) in the negative binomial
distribution and recently, Nasiri and Pazira (201 0b) have
done estimation of R = P (Y<X) with presence of outliers
in exponential case.

Dixit et al. (1996) assumed that random variables
(X, X,,.., X)) represent the distance of an infected
sampled plant from a plant in a plot of plants moculated
with a virus. Some of the observations are derived from
the airborne dispersal of the spores and are distributed
according to the exponential distribution. The other
observations out of n random variables (say k) are present
because aphids which are know to be carriers of Barley
Yellow Mosaic Dwarf Virus (BYMDYV) have passed the
virus mto the plants when the aphids feed on the sap.
Dixit and Nasiri (2001) considered estimation of
parameters of the exponential distribution in the presence
of outliers generated from uniform  distribution
(Khamis et al., 2006, Elahi et af., 2009, Muiru ef al., 2010,
Shittu and Shangoedoyin, 2008; Xie et al., 2007).

In present study, we obtain the moment, maximum
likelihood and mixture estimators of R in Rayleigh
distribution with presence of k outliers generated from the
same distribution. Rayleigh distribution 1s a special case
of the Weibull distribution. Tt has been used to study the

scattering of radiation, wind speeds or to make certain
transformation. The probability density function of the
Rayleigh distribution with parameter of 0 is given by:

2x -z

f(x,e):Fe LN x,0>0

The Maximum Likelihood Estimator (MLE) of 0 is:

no_2
DI
n

Thus, we assume that the random variables
(X, X,,..., X,) are such that k of them are distributed with
p.df £ (x,6,px

e
fl(x,B,B):zieBe 8 x>0,0-00<ps1 (1

and the remaimng (n-k) random variables are distributed
with p.dff, (x, 6)
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METHOD OF MOMENT

LetY,, Ya,.., Y, be arandom sample for Y with P.d.£:

g(y,l):i—ye’ff*,po, A0 (3)

and X, X,,..., X, be a random sample for X with P.d.f.:
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with presence of k (Know) outliers (Dixit, 1989,
Dixit and Nasiri, 2001; Nasiri and Pazira, 2010a;
Abu-Shawiesh et al, 2009, Goegebeur et af., 2005;
Guo and Zhang, 2011, Ismail, 2008). The parameter R we
want to estimate 1s:

R=P(Y <X)
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For k = 0, R was proposed by Surles and Padgett
(1998). Since P (Y=<X) +P (Y==X) =1, we consider P (Y=X):

b)\[ﬂ (6)
R=P(Y>X)=
=X=Tpre A+e
Where:
LS el ST
n n

R bAB b (7

where, N Liy? . 0 and § can be obtained as;

m g

From Eq. 4 we get:

E(X)_%—ewe ®)

EX")= 2b{%} + 2067 )

. sl m
Consider,m; = —EXJ and let D =—2=
(U= I

b B o (10)

and:

H=— (11

From Eq. 11, we have:

(EzH—zﬁ)B2 +26bHB + (b"H - 2b)=0 (12)

R (13)
Where:

&.1 =
£, = 2bbH
E,=b’H-2b

If A =E£;/-4 £, is non-negative then the roots are
real. Therefore:

6: -£, ‘*"\!E.»zg —45E; (14

2

and from Eq. 10:

g LB+ (15)
2b+ 2b7p?

Thus, we can obtain the moment estimator of B and
0 by using Eq. 14 and 15, respectively.

Here, we shall show that @ and g are asymptetically
unbiased estimators. Let:

la
—2¥Vx
ng’ !
and:
10
W:e:*EXl
ng
then:
DM
W

Here, we can write g as a function of W, W,

B=hiw,.w,) (16)
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Let:

E(w:u:b—;me

2
E(W)=v= 21{%} +2b@?

Expand the function h (w,, w,) around (p, v) by
Taylor series:

W=H W=V +

(17)

H ch
O=hiw,wy)=h vy (w, —p)——=
1

ch
S V)E

Then:
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and similarly:
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Note that if we consider:

W, =i2Yﬁ

and R =h(w,,w,,w,) , It is easy to show that ER)=R .
METHOD OF MAXIMUM LIKELIHOOD

The maximurn likelihood estimator of R can be shown
to be:

B bAB bi (18)

Where:

and to obtain the maximum likelihood estimator of 8 and
B, we consider the joint distribution of X with presence of
k outliers:

b .
2prrrx, _AM

Lx.0f)=——=—e

) (19)
Cn k)8 Ze

where

>

n-k+  n-k+2 4
g_ ‘gﬂ Ag=hil A=Ay 4l
For the more details see Dixit and Nasiri (2001) and Nasiri

and Pazira (201 0a).
IfL (6, p) =In[L (x, 6, p)], then from Eq. 19

n ixf Ledes
L{0,8)=nln2+ ¥ Inx, +kln[57nlnﬂflnC(n,k)f%+lnEe =

=1 A

The solve for our MLEs of 6 and P we take the
derivative of the log likelihood (L (8, B)) with respect to
each parameter set the partial derivatives ecual to zero
and sclve for 8 and §

L2
P
n = _

oL(8,p) 5 =t
® s (B =y =0 @D
9226 #
A
K B s
E[Exz,}ea & '
aL(eﬁ): & | ia * zO (22)

There is no closed-from solution to this system of
equations, sc we will solve for 4 and p iteratively,
using the Newton-Raphson method, a tangent method for
root finding. In our case we will estimate ¢ = (6, P)
iteratively:

(23)

where, g 18 the vector of normal equations for which we
want g = [g;, g,] with:

n 32
&= Ei:lxi -nb- -5
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The Newton-Raphson algorithm converges, as our
estimates of 6 and B change by less than a tolerated
amount with each successive iteration, tc 9 and f.

Note: Here, the number of k outlying observations is
known, k =1, 2,..., n. But if k is unknown, then k can be
selected by evaluating the likelthood for different value of
k choosing the one that maximizes the likelihood.

MIXTURE OF METHOD OF MOMENT
AND MAXIMUM LIKELIHOOD

Read (1981) proposed the methods which avoid the
difficulty of complicated equations. According to Read
(1981), replacement of some but not all, of the equations
in the system of likelithood may make it more manageable.
From Eq. 15, we have:

LIRS (30)

2b+2bp?
and from Eq. 22:
B4 9
kéEe ¢ E{ "
A (31)
L 2 e
3B et
P!
SIMULATION STUDY

In present study, we have addressed the problem of
estimating P (Y<X) for the Rayleigh distribution with
presence of k outliers. The moment, maximum likelihood
and mixture estimators of R are derived and has been
shown that the moment estimator of R is asymptotically
unbiased estimator. All the results are base on 1000
replications and are given in Table 1 and2fork =1
and 2, respectively. In this case as expected when m = n
and m, n increase then the average biases and the
MSEs decrease. For fixed m as n increase the MSEs

For k=0, & was proposed by Surles and Padgett  decrease and also for fixed n as m increase the MSEs
(1998). decrease.
Table 1: Biases and Mean Squared Errors (MSE's) of the point estimates from Rayleigh distribution, whenk=1,3=2,8=5,1=3

Bias MSE
(n,m) R MLE Mom Mix MLE Mom Mix
(15,15 0.3864 0.0143 -0.0325 -0.0427 0.0133 0.0144 0.0143
(20,20) 0.3835 0.0085 -0.0220 -0.0295 0.0089 0.0089 0.0063
(25,25) 0.3818 0.0070 -0.0136 -0.0131 0.0058 0.0061 0.0051
(15,20) 0.3864 0.0131 -0.0299 -0.0405 0.0133 0.0140 0.0128
(20,15) 0.3835 0.0112 -0.0277 -0.0390 0.0125 0.0128 0.0107
(15,25) 0.3864 0.0097 -0.0276 -0.0378 0.0095 0.0099 0.0103
2515 0.3818 0.0085 -0.0226 -0.0373 0.0083 0.0099 0.0097
(20,25) 0.3835 0.0075 -0.0215 -0.0273 0.0067 0.0087 0.0058
(25,20) 0.3818 0.0074 -0.0164 -0.0188 0.0063 0.0084 0.0055
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Table 2: Biases and Mean Squared Emrors (MSE's) of the point estimates from Rayleigh distribution, whenk=2,3=2,0=5 A =3

Bias MSE

(n,im) R MLE Moin Mix MLE Mom Mix

(1515 0.3977 0.0142 -0.0106 -0.0199 0.0386 0.0495 0.0295
(20,20) 0.3920 0.0120 -0.0039 -0.0098 0.0196 0.0199 0.0124
(25,25 0.3886 0.0104 -0.0017 -0.0041 0.0013 0.0020 0.0034
(15,20) 0.3977 0.0141 -0.0080 -0.0185 0.0373 0.0341 0.0214
(20,15) 0.3920 0.0140 -0.0078 -0.0115 0.0293 0.0313 0.0182
(15,25 0.3977 0.0123 0.00770 -0.0114 0.0232 0.0262 0.0179
(25,15) 0.3886 0.0122 -0.0074 -0.0101 0.0220 0.0245 0.0133
(20,25) 0.3920 0.0109 -0.0035 -0.0066 0.0185 0.0185 0.0080
(25,20) 0.3886 0.0107 -0.0034 -0.0063 0.0096 0.0117 0.0078

CONCLUSION Dxit, UJ., 1989. Estimation of parameters of the gamma

From Table 1 and 2, we conjecture that the moment
estimator of R 1s asymptotically unbiased. On the other
hand, the
underestimation but the maximum likelthood estimator 1s
overestimation, this is true for k =1 and 2. The MSEs of
any three estimators are tending to zero and when

moment and mixture estimators are

m = n and m, n mcrease then the MSEs decrease and for
fixed m as n increase the MSEs decrease and also for fixed
n as m increases the MSEs decrease, this 1s true for
k=1and?2.

Table 1 and 2 showed that the mixture estimator has
the smallest estimated MSEs as compared with the
likelihood estimators. We
strongly feel mixture estimator i1s better and easy to
calculate than the maximum likelihood and moment

moment and maximum

estimations. From the previous observations, we suggest
to use mixture method for estimating R = P (Y<X) in
Rayleigh case with presence of k outliers because it is
easy to calculate than the rest.
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