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Abstract: Several cases of failures in steel buried pipelines under the effect of wave propagation have been
reported. Due to seismic waves propagations these pipelines will encounter various axial forces and bending
moments which will consequently lead to the local buckling of the pipes and the reduction of the pipes
hollow-sectional area. These effects cause overall reduction of efficiency of pipes. Due to the probabilistic
nature of soil and earthquake specifications, a deterministic approach for analyzing buried pipeline networks
against earthquake excitations 1s not appropriate. In this study an algorithm for reliability assessment of buried
plpeline networks 1s proposed which 1s based on nonlinear dynamic analysis and calculation of reliability using
Monte Carlo simulation. Due to complexity of numerical analyses of buried pipeline networks, there is no
possibility of an explicit calculation for the performance limit state function, so a trained multilayer feed forward
neural network was used as an alternative. For tlus purpose, the obtained results of many deterministic
numerical analyses were used for traimng the neural network and the performance limit state function was
replaced by trained neural network. Finally, based on the probability density function, standard deviation and
average of probabilistic parameters, reliability of the pipeline network for different performance levels, was
determined. By mvestigating a buried pipeline network m sandy soil as a case study, effectiveness of the
proposed algornthm was mvestigated and by determimng the importance measure of probabilistic parameters,
sensitivity analysis was performed.
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INTRODUCTION

Buried pipelines are endangered by Permanent
Ground Deformations (PGD) and wave propagations.
PGDs like landshde, faultng, lateral spread and
subsidence are more dangerous for the buried pipes due
to more intensive localized effects. Several cases of
failures due to the effects of PGDs have been reported by
O’Rourke and Liu (1999). The strains created in the
pipeline under the effect of PGDs are greater than those
created by earthquake However,
propagations cover a sigmficantly larger area of the
pipeline network which imposes a more meanmingful failure
to the system.

The Mexico City earthquake of 1985 is a good
example for this type of failure. Based on the report of
Avyala and O"Rourke (1989) no significant PGD m the city
was observed But extensive failures in the water supply
due to the wave propagation were reported. Although,
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these failures were more common 1n brittle pipes such as
asbestos cement or concrete pipes, rather than the more
ductile steel or polyethylene pipes. The Study of
earthquake effects on buried pipeline networks and the
damage induced on them i1s usually performed by
calculating damage functions or fragility curves. These
functions or curves present the number of failures per unit
area, agamst the Peak Ground Acceleration (PGA) or
Velocity (PGV).

Eguchi et al. (1983) separated damages to the
pipelines owing to PGD or wave propagations, in order to
compute damage functions. O’Rourke and Ayala (1993)
presented the damage rate against the PGV for different
kinds of concrete pipes, cast iron, asbestos cement and
etc., which was based on the available information of four
earthquakes in the United States and two earthquakes in
Mexico. Chen et al. (2002) did a study about the damage
to gas and water supply systems on Chi-Chi (Taiwan)
earthquake. Through calculating damage functions, they
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concluded that the best input parameter for determining
the rate of damage of the gas pipes 1s PGA. Shih and
Chang (2006) surveyed damages to the water pipelines in
Taiwan due to the Chi-Chi earthquake. They categorized
the causes of the failures in buried pipelines due to the
earthquake. In which a Ground vibrating and wave
propagation of 48% and a PGDs, liquefaction and other
52% were recorded.

As it is shown, the failure due to wave propagation
has a high percentage. Damage functions may define just
an overall sense of the damage in a specific network and
cannot offer any information about occurred failure levels,
location or reduction of the network’s performance. To
have a better understanding of the damages, researchers
proposed using analytical and numerical methods for
calculating the pipelines response subjected to wave
propagation. Newmark and Rosenblueth (1971) calculated
the analytical response of the buried pipeline under
earthquake effects, by assuming siunilarity of pipe and
ground deformation. Other methods by Shah and Chung
(1974), Takada (1977), O’Rourke et al. (1982), O’Rowke
and El-Hmadi (1988) and Wang et al. (1982) were offered,
each of which has employed some more refined
assumptions comparing with the initial work by Newmark
and Rosenblueth (1971).

In spite of the efficiency of all these analytical
methods, in some cases the exact response of the
pipelines camot be calculated. This is due to the
complexity of the behavior of buried pipes, alongside their
complex geometry and the nonlinear behavior of soil.
Therefore, methods based on numerical analysis were
given much greater attention by researchers.

Various modeling techniques have been proposed by
researchers m recent decades. Wang and O’Rourke (1977)
concluded that relative motion between the soil and the
pipe are negligible by modeling the pipe as a beam model
on an elastic foundation. They assumed linear behavior
for both pipe and soil with considermg ground
deformation as a sinusoidal wave. Muleski et al. (1979)
used finite eylindnical shell model for buried pipelines and
Winker model for pipe and soil mteraction. They reframed
from dynamic effects and by quasi static method analyzed
buried pipes undergoing effects caused by earthquakes.
Datta et al. (1982, 1984) studied the dynamic behavior of
the buried pipes in a state of plane strain. They modeled
the buried pipe as an infinite thin, isotropic, homogenous
and elastic shell surrounded by a circular trench with the
pipe concentrated at the centre.

O’Leary and Datta (1985) presented a method for
estimating the maximum stress i buried pipes under the
earthquake effect. They proposed a three-dimensional

analysis method for obtaining the dynamic response of
buried pipelines to mnecident compressional waves (S and
P) travelling along the pipeline, with low frequencies and
long wave lengths. Elhmadi and O’Rowke (1990)
conducted a study about the effect of wave propagation
on segmented buried pipelines. They considered
nonlinear behavior for the connections and so1l properties
and also the connection behavior were assumed to be
probabilistic parameters. Then, by using Monte Carlo
simulation and quasi static analysis, they obtained axial
displacement in each connection of the pipe and
developed a diagram of connection tensile failure against
ground strain. Datta (1999) conducted a detailed review
on various modeling technmiques for numerical analysis of
buried pipes m soil and had considered the wave
propagation as an important source of damage to
pipelines.

Hosseim and Mogharian (1999) performed a study on
the effect of harmonic transverse waves on a buried
pipeline made of ST-37 steel, in which the nonlinear
behaviors of the soil and pipe were taken into account.
They used ERAUL-3 computer program and obtained the
mimimum amplitude by which yielding starts in the pipe
section for any given excitation frequency. Hosseini and
Ajideh (2001 ) conducted a study on the seismic analysis
of jomted pipe systems in which the wave propagation
was modeled as a multi-node input for both soil and pipe.

Rofooie and Qorbami (2008) performed a parametric
study on the seismic behavior of buried pipes under the
effect of three dimensional Kobe (Japan) earthquake
records. Pipes with different lengths and free and fixed
boundary conditions were analyzed They concluded that
for pipes with lengths above 900 m, the axial displacement
1in the middle of the pipe 15 mdependent of the two end
conditions. Shi et al. (2008) examined the effect of an
earthquakes surface axial wave on buried segmented
pipes and their connections.

In arecent study by Hosseim et af. (2010) the seismic
functionally of water distribution networks
evaluated. They conducted a series of nonlinear time
history analyses in which the nonlinear behavior of pipe
connections had been taken into consideration. They
modeled pipe segments as beam elements and the
springs
performance of a sample distribution network. Finally,
Hosseini and Roudsari (2010) performed a study on the
effects of surface transverse waves on buried steel
pipelines by considering the nonlinear behavior of soil
and pipes. In their study the possible damages in straight

WEre

connections as nonlinear to evaluate the

continuous steel buried pipelines subjected to strong
surface transverse waves had been investigated. By
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using numerical modeling they presented the maximum
compressive strain corresponding to the start of local
buckling in the pipe.

In attention to the probabilistic behavior of soil and
earthquake parameters, reliability base analyses can
present the seismic response of buried pipeline networks
with an acceptable precision. As it is seen m the previous
studies, researchers did not focus on the relationship
between the reliability of buried pipeline networks and
peak ground displacements or other earthquake
specifications. The main purpose of this study 13 to
determine the reliability of buried pipeline networks under
the effect of earthquake wave propagation.

Due to the high ductility of steel pipes, it is unlikely
that the pipe will become ruptured due to earthquake
waves. However, large lateral or axial movements can lead
to the pipe experiencing plastic deformation and buckling
on its walls (Roudsari, 2011). These effects will result in
the ovalization of the pipe section and the reduction in the
pipe’s hollow section area. With the reduction of the pipe
hollow section area, the efficiency of the pipelines material
transmission encounters difficulty and this causes a
reduction in the pipes serviceability level. So, the damage
level for each pipeline and approximate ovalization rate of
its hollow section area, due to the effect of earthquake
wave propagation should be determined based on the
maximmum stram of the pipelme. Calculation of the
maximum strain in each pipeline 1s performed by the
nonlinear dynamic finite element analysis.

By determining the T.imit State Function (I.SF) of the
pipeline network, the Monte Carlo simulation method will
be used to calculate the reliability. However, due to the
use of finite elements analysis, the LSF of the pipeline
network 1s not explicitly available and should be
approximated. Multilayer feed forward Neural Network
(NN) as a strong approximator 1s considered by many
researchers.

Hutade and Alvarez (2001) made a comparison
between multilayer NNs and radial basis function network
in determining the reliability of a complex system. They
showed that the performance of a multilayer feed forward
NN in approximating the L.SF is better than the radial basis
function network. Goh and Kulhawy (2003) used NN to
model the LSF for reliability assessment. With different
examples they showed the advantage of the NN over the
other approximators, such as polynomials. Gomes and
Awruch (2004) performed a comparison between the
determination of the reliability, based on the response
surface method by using NNs and other methods. Tt was
concluded that the response surface method and
approximation of the LSF with NN, 1s more accurate with
a less number of mput pars. Schueremans and Van

Gemert (2005) presented contents about the benefits of
using the Splines and NN in determining the reliability of
the structures. Deng et af. (2005), Elhewy et al. (2006) and
Cardoso et al. (2008) used numerous linear and nonlinear
examples to show the NN efficiency in the calculation of
reliability in structures with implicit T.SF.

Hence, the performance of multilayer feed forward NN
in the approximation of complex fimetions by different
researchers has been approved. Eventually by replacing
the trained NN with performance T.SF, the reliability of the
pipeline network agamst the peak ground displacement 1s
determined. The main purpose of this study was
calculation of reliability of buried pipeline networks
against Earthquake wave propagation using Neural
Network and Monte Carlo simulations. The other goal of
this study was to perform sensitivity analysis and
investigate the effect of various probabilistic parameters
on the networl reliability.

MODELING THE BURIED PIPE NETWORK

With regard to modeling methods of buried pipes,
comprehensive nformation can be found in reference
Datta (1999). Defimtely, the most perfect model is a
three-dimensional model which the soil and pipe are
modeled as solid and shell elements, respectively by
considering their actual nonlinear behavior. Due to
pipelines relatively large length and the lugh volume of
required calculations, the use of this model is not
practically possible. The most common model of buried
pipelines used in this study 1s shown in Fig. 1, m wluch
the pipeline s modeled by beam elements.

In this 2- or 3-dimensional model the surrounding soil
15 modeled by bilinear springs as shown m Fig. 2. The
model shown in Fig. 1 is capable in taking into account
soll-pipe mteraction based on the ASCE Technical
Council on Lifeline Earthquake Engineering (TCLEE)
model. As shown in Fig. 2 behaviors of longitudinal and
transverse-horizontal soil springs m two directions are
assumed to be symmetric. The equivalent stiffness of
these springs depends on the pipe diameter and soil
specifications including density, internal friction angle,
cohesion coefficient as well as the burial depth of the
Pipe.

The time delay to the wave propagation effect was
taken into account by giving different start instances of
excitation, to different equivalent soil springs along the
pipe model based on the shear wave velocity in the soil.
However, the variation of frequency content of the
excitation along the pipe model has been neglected, as the
soil type has been assumed to be the same along the pipe
in each case.
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Fig. 1: Structural model of the buried pipeline
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Fig. 2: The actual and idealized longitudinal and lateral
behaviors of the equivalent soil springs for
modeling the soil and its interaction with buried
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EVALUATION OF LOCAL BUCKLING
OCCURRENCE AND THE REDUCTION OF PIPE
HOLLOW SECTION AREA

Large ground deformations can cause the ductile
steel pipes to experience plastic deformation and the
reduction of pipe hollow section area. The first mdicator
of this reduction in the pipes hollow section area is the
start of local buckling due to compressive strain resulting
from bending and axial compressive forces. Hall and
Newmark (1977) proposed that the axial stram, g,
corresponding to the start of local buckling in steel pipes
to be in the following range:

015t cec02t )]
R R

where, t 15 the thickness of the pipe and R 1s the radius.
Equation 1 was based on the laboratory test on thin
wall cylinders. Based on the numerical analysis
Hosseini and Roudsari (2010) confirmed Eq. 1 as a starting
point of the local bucking for steel pipes with different
diameters and thicknesses. For assessment of the
efficiency reduction m the pipeline, the relationship
between the reduction rate of the pipe hollow section area
and the compressive stram resulting from bending and
axial load, should be found. The numerical seismic

Branch pipe

~~ Boundary

Boundary

/

analysis on pipelines such as water and gas are usually
modeled as beam elements rather than shell elements due
to their large length. Therefore, it is not possible to
calculate the change in pipe hollow section area directly
from these models. To measure the reduction in hollow
section area, the pipe should be modeled by shell or solid
elements.

In order to determine the relationship between the
reduction of the pipe hollow section area and the
maximum compressive strain, a pipe segment, was
modeled by Shell elements. An analysis was performed by
fixing one end and applying some rotation to the other
end, the middle of the pipe was considered to have a small
thickness imperfection, with the highest compressive
stress located at this poimnt.

By using this analysis the reduction of pipe hollow
section area m the middle section of the pipe agamst the
rotation of its free end was obtained. In the next step, the
same pipe without the thickness imperfection was
modeled by beam element, under the same loading. The
maximum compressive strain values in the middle of the
pipe segment against the rotation of its free end were
calculated. By repeating these two cases for pipe
segments with different diameters and thicknesses
(according to Iraman Standards), the variation i A/A;
value (obtained by Shell elements) against € value
{obtained by Beam elements) was plotted for pipe
segments of different dimensions.

Figure 3 shows the relation between reduction of the
pipe hollow section area and the maximum axial strain for
the pipe with a diameter of 0.6096 m and a thickness of
0.00792 m. After analyzing a buried pipeline network under
the effect of earthquake wave propagation and calculating
the maximum axial strain in all the pipes, Fig. 3 and similar
graphs can be used to calculate network efficiency
recduction.

It 13 noticeable that Eq. 1 shows corresponding strain
from the start of local buckling for the unburied pipe.
Hosseim and Roudsari (2010) modeled pipes in various
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Fig. 3: The reduction of the pipe hollow section area with
diameter of 0.6096 m and thickness of 0.00792 m,
with respect to maximum axial strain

types of soil and showed that the stran value
corresponding to the start of local buckling in the pipe
buried in loose sand is less than those of the dense sand.
This 18 due to the loose sand being softer which provides
less lateral restraimt for the pipe. They concluded that soil
properties are influential in the amount of strain
corresponding to the start of local buckling in the pipe.
Although, this effect has been neglected in the Eq. 1
proposed by Hall and Newmark (1977). They corrected
Eq. 1 for different types of soil and offered Eq. 2 and 3 for
dense and loose sandy soil, respectively.

0.17%<a<0.26% 2

0.15%<a<0.34% 3

By numerous modeling of pipeline subjected to
earthquake wave propagation, they concluded that the
straight continuous buried steel pipes are not vulnerable
against seismic waves with amplitudes of up to 1.0 m.
They reported that damages due to wave propagation in
the buried steel pipes in past earthquakes have been
mainly due to the complex geometry of the pipe network
and existence of several intersections. These factors
change the seismic behavior of the buried pipe system.
Meanwhile, part of the damages observed in buried pipe
networks are due to corrosion in the pipes which 1s not
the focus of this study (Yahaya et al, 2011). In the
following text, the branch effect on the created strain in
pipeline subjected to earthquake wave propagation will be
considered.

For this purpose, the main pipeline with a T-shaped
branch according to Fig. 1, with different diameters and
thicknesses in different types of soil was modeled These
models occurred under the effect of three-dimensional
components of amplified earthquakes. By calculating the

Table 1: Soil specifications and peak ground displacements of four selected
earthquakes in each direction

Rand Earthquake

type v 0] Ve name Dy Dy Dyr

Dense 21000 35 a25 Northridge 100 92 60
Chi Chi 86 95 96

Loose 18000 30 150 Kobe 107 98 45

Loma Prieta 77 71 66
i is the internal friction angle of soil in degrees, v is the soil specific weight
in N m >, V, is the shear wave velocity in soil in m s! and Dy, Dyr and
Dyr are, respectively the peak ground displacement in axial, transverse-
horizontal and transverse-vertical directions in centirneter

Table 2: Maximmumn of compressive strain in the main and branch pipes and
comparison of them with the corresponding values of starting local

buckling
Maximum Strain
axial at start of  Occurring
compressional buckling of buckling
strain (Eg. 20r3) inpipe
Dense sand Northridge Main  0.0085 0.0055 Yes
Branch 0.0046 0.008 No
Chi Chi Main 0.0065 0.0055 Yes
Branch 0.0036 0.008 No
Loose sand Kobe Main  0.0047 0.0038 Yes
Branch 0.0062 0.0044 Yes
Loma prieta Main ~ 0.004 0.0038 Yes
Branch  0.0029 0.0044 No

maximum strain in the main and branch pipe by nonlinear
dynamic finite element analysis and comparing pipe
responses with local buckling threshold values, it 1s
shown that the local buckling can occur in both pipes.
The obtained results for one of these models will be
reviewed. In this case, the mam pipe was assumed to have
a length of 1200 m and a diameter of 1.0668 m, with a
consistent thickness of 0.0127 m. The branch pipe was
also assumed to have a length of 600 m, diameter of
0.6096 m and a thickness of 0.00792 m. The stress-strain
behavior of pipe steel material was assumed to be of
Ramberg-Osgood model with steel type X-60 and burial
depth of 1.5 m for pipes.

Four earthquake records were selected based on
their compatibility with the soil conditions, alongside
their  corresponding
displayed in Table 1. In each analysis case, three records
of  the longitudinal,
displacements of the
simultaneously applied.

Table 2 compares the maximum compressive axial
strain in the main and branch pipes based on the fimte
element analysis, with the of the
corresponding strains from the start of local buckling
(Eq. 2, 3). It can be seen that local buckling in some cases
occurred.

To investigate the occurrence of local buckling at the
junction, a short length of each side of this point modeled
with the Shell element is shown in Fig. 4. Obtained

shear wave velocities are

transverse and vertical

earthqualke motions  were

lower limits
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Fig. 4: The sample modeled for assessing the occurrence
or non-occurrence of local buckling on the
junction

displacements and rotations from dynamic analysis with
the beam model were applied to these points identically
and the nonlinear dynamic analysis was performed with
consideration to the material and geometrical nonlinearity.
Fmally, the analyses were carried out m various cases and
it was observed that although the little points at the
junction entered yield phase, there was no observable
local buckling or reduction of the pipes hollow section
area. Therefore, 1t can be concluded that damages to the
buried pipeline networks under the effect of earthquake
wave propagation are local buckling of the pipes with the
reduction of their hollow section area.

THEPROPOSED ALGORITHMFOR DETERMINING
THE RELTABILITY OF BURIED PIPELINE
NETWORKS

In this algorithm for determining the reliability of
buried pipeline networks, NN and Monte Carlo simulation
will be used. Figure 5 shows the various steps of the
algorithm that will be reviewed in the following text with
greater detail.

Selection of the probabilistic parameters that are
effective on the pipelines network reliability: At the first
step, all the effective parameters on the reliability of the
pipeline networlk including soil characteristics, geometry
and specifications of the pipeline network and ground
motion specifications should be determined. It can be
claimed that in an ideal case, all of these parameters are
probabilistic and there are no deterministic parameters in
the system. Since the explicit calculation of LSF in
complex systems such as buried pipeline network are not
possible, the NN as a powerful approximator will be used.
For training the NN, a large number of nonlinear dynamic

analyses should be conducted and the minimum numbers
of required inputs are related with the numbers of
probabilistic parameters, exponentially, as considered in
the next section. On the other hand the nonlinear dynamic
analyses of large pipeline networks under the effect of
earthquale wave propagations are very time consuming.
Therefore, the number of probabilistic parameters of the
system should be reduced if possible.

Determining LSF of the pipeline network: In order to
determine the reliability of the pipeline network, the failure
level m the network should be determined as a function of
the probabilistic parameters. Failure rate in each pipeline
is calculated based on the occurrence of local buckling
and the reduction of hollow section area as a function of
the meximum axial compressive stram on the pipe. This 1s
inaccordance to Eq. 2, 3 and Fig. 3. So, the L.SF should be
able to calculate the maximum axial strain (g,,.) in each
pipeline as a function of the probabilistic parameters. If
the probabilistic parameters of the pipeline network are
assumed to be x|, x, and ... x,, for the ith pipeline of a
network, the performance T.SF is as follows:

s = LSE, (), X5, X)) “

The relationship between probabilistic parameters
suchas x,, x; and ... x, and the maximum compressive axial
strain in each pipeline 1s established by nonlinear fimte
element dynamic analysis. NN is used as an alternative
because there is no possibility of calculating an explicit
expression for the LSF. Thus, some determimistic analyses
15 performed and the obtained results are applied for
training the NN, then the trained NN (i.e., Emulator) is
used for interpolation. The selection of the number of
inputs and their distribution in the space of probabilistic
parameters are very important for the NN traiming process
and predicting results. With increasing ground motion
amplitudes, plastic deformation will occur in the buried
pipeline network, as a result LSF will be more complex and
NN requires more inputs for the traimng process.

In practice, upper and lower limits of the parameters
X, X, and ... x, should be determined and for each
probabilistic parameter, some values in the range of its
variation must be chosen. Then, by generating different
possible combinations, many deterministic analyses
should be performed. Yun and Bahng (2000) proposed the
Hypercube method for determming the number of mputs
for traning the NN. According to their opimen, for each
variable only the maximum, minimum and mean values are
selected and the total number of inputs for training
the NN 1s suggested 2+2n+1 that n s the number
of probabilistic parameters. Thus, according to the
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Selectionof the effective parameters on the
reliability of the pipeline network

!

Determination of deterministic
and probabilistic parameters

!

Determination of the exact value of deterministic

parameters and determining the probility density

function, mean and standred devition and upper
and lower limits of probablistic parameters

}

Performing a large number of
deterministic nonliner dynamic analyses
and calculating the maximum strain in each
pipeline for determining of the reduction
rate of the pipe hollow section area

!

Increasing the number of
deterministic analyses for
traning the natural
network

Traning of neural
network based on the
deterministic
analyses

Is the accuracy of the
netural network
acceptable?

Determination of the pipeline network
reliability by using the neural network and
Monte Carlo simulation

Fig. 5: Proposed algorithm for reliability assessment of buried pipeline networks under the effect of earthquake wave

propagation

hypercube method, the number of mputs for traming the
NN 1s related to the number of probabilistic parameters
exponentially.

In the proposed algorithm, munber of mput pairs for
training the NN 1s determined based on the hypercube
method. After training the NN, its accuracy will be
controlled based on a series of pairs that were not used in
the trammng process. If the network accuracy 1s not
acceptable, by performing a new deterministic analyses
and generating new mput pairs, the traiming process of
NN will be repeated. Thus, determining the number of
inputs for training the NN is based on trial and error.

Determining the reliability of the pipeline network:
Monte Carlo simulation is used to calculate the reliability

of pipeline networks. By assuming that all the
probabilistic parameters and their probability density
functions, mean and standard deviation are known, a
string of random numbers are generated for each
parameter. Then for each combmation, by using the
trained NN, the maximum axial compressive strain for each
pipeline 1s calculated. Therefore, in the case of local
buckling occurring, a reduction of pipeline hollow section
area can be determined. The level of the pipeline network
efficiency 1s related to the pipelines hollow section area
and after the occurrence of local buckling with some
reduction in the pipes hollow section area, the network
efficiency 18 reduced. By calculating the network
efficiency level, for all the generated strings, the reliability
can be obtained.
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For a fuwther detailed explanation, Fig. 6 is
considered, showimng a buried pipeline network. Assume
that the rehability of the network for the mmimum
efficiency level of 80% should be found against the peak
ground displacement with amplitude D. Suppose that N
different combinations of probabilistic parameters have
been produced and for all of these cases the efficiency
level of the pipelines have been determined. The pipeline
network is functioning when the outputs of nodes 1 and
2 are at least 80%. So it can be said that the network is
functioning when the reduction in pipe hollow section
area in all the pipes L1 to L4 is less than 20%. If the
pipeline network mn n cases of N combinations 1s
functioning, the reliability of the network 1s equal to:

)

FAE

There are different methods for calculating the
pipeline network reliability. For example by determining
the reliability of nodes 1 and 2 separately, the reliability of
the pipeline network will be obtained as a combination of
their numerical weights, as follows:

R== (6)

L3

12
Source Ll L4 5
o > > ®

Fig. 6: The sample pipeline network for determimng the
reliability

Reliability

A

|

/ Performance 60%

Performance 100%

>

Peak ground displacement

Fig. 7: The qualitative results for reliability of the buried
pipeline network against earthquake
propagation

wave

In this equation w, is the assigned weight and R, is
the reliability of the ith node. These calculations should
be repeated for different values of D to be able to obtain
the pipeline network reliability for different levels of
network efficiency and the meaximum earthquake
displacements. As the final output of the proposed
algorithm, Fig. 7 shows qualitative results for the
reliability of the pipeline network against the earthqualke
wave propagation.

INVESTIGATION OF PROPOSEDALGORITHMIN A
SAMPLE PIPELINE NETWORK

Figure 8 shows the sample pipeline network. Here,
the reliability of the sample pipeline network was
calculated against the maximum earthquake displacement,
based on the proposed algorithm. Northridge (USA)
earthquake with peak ground
displacements and constant frequency content were used,
as shown in Fig. 9. Tt is considered that the pipeline
network is in dense sandy soil, with a main pipe diameter
of 1.0668 m and thickness 0.0127 m; with the branches
having a diameter of 0.6096 m and thickness 0.00792 m.
The stress-strain behavior of the steel pipe material was
assumed to be of Ramberg-Osgood model with
steel type X-60, with a burial depth of 1.5 m and
hinged supports for all the free ends of the pipes.
The axial and transverse-horizontal records of the
earthquake affected are displayed in Fig. 8 with the
transverse-vertical record being perpendicular to both
of the axial and transverse-horizontal records. Wave

records variable

propagation direction was assumed to be along the
branch pipes.

The probabilistic parameters and their upper and
lower limits are observed in Table 3. As shown in Table 3,
five probabilistic parameters were selected and the total
numbers of 2°42x5+1 = 43 different combinations were
considered as the input of the NN, based on the
hypercube method. Meanwhile ten random combinations
were chosen for checking the accuracy of the NI after the
traiming process, without any contributing to the traming
cycles (Table 4).

Table 3: Probabilistic pararmeters and their range of variations for the sample
pipelines network

Parameters Min Max
ol 25 45
v (Nm? 16000 22000
V, (m sec™!) 300 900
D, (cm) 10 140
D, (cm) 10 140

D, and Dy, are the maximum vertical and horizontal displacements of the
earthquake records, respectively. Dy is the resultant of the axial and
transverse-horizontal displacernents of the earthquake
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Wave propagation
direction P, P;

Fig. 8: Sample pipeline network for determming the reliability, based on the proposed algorithm
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Fig. 9: Displacement records of the Northridge earthquake used in this section

Table4: Some combinations for training the NI according to the hypercube

method
No. ° v (Nm™) Vimsh Dy, (cm) D, {cm)
1 25 16000 300 10 10
16 25 22000 200 140 140
20 45 16000 300 140 140
35 35 16000 600 75 75

For each 53 cases, nonlinear fimte element dynamic
analysis was performed and the maximum axial strain in
each of the ten main and branch pipelines were

deterrmined; which the results for some of these
combinations are presented i Table 5. It is noteworthy
that the location and mstance of maximum strain
occurrence during earthquake, in each pipeline and in
each 53 combinations were different. Therefore, the L.SF
of the pipeline network becomes very complex and the
training of the NN becomes difficult.

The testing results of trained NN based on the

43 primary inputs were not acceptable, so 32 new
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Table 5: The maximum axial strain in 10 pipelines for some of the 53 combinations based on the nonlinear finite element analysis (*1E-6)

No. M1 M2 M3 M4 M5 Bl B2 B3 B4 B3
1 184 299 303 286 287 342 357 338 338 303
1o 6150 10321 5274 5656 6532 7432 6423 11967 8284 11067
20 7408 5413 8046 6650 4556 11715 12487 8624 13768 9691
35 2360 3363 2961 3087 2835 3860 4429 2022 5095 2022
combinations of inputs were generated and the training 14000
and testing process was performed agamn based on 75 and
10 combinations, respectively. In this step, the accuracy 12000 ®
of the trained NN was desirable as a substitute for the _
performance LSF 1n the sample buried pipeline network. :E 10000 - o
Figure 10 presents strains from the finite element analyses 5
in comparison with trained NN for 10 random £ 2000 4 ¢
combinations in pipelines M1 to M 5. The linear % °
correlation coefticient which is approximately 99% can be ; 6000 - . o
found from Fig. 10. Therefore, the NN can be replaced by £
implicit LSF, confidently. £ 1000 éq
To calculate the reliability by Monte Carlo simulation, 5 &
the probability density function of probabilistic 2000 .
parameters should be determined. Many researchers in B o
previous works considered the soils probabilistic .

parameters as normal distribution (Liang et al, 1999,
Malkaw1 et al., 2000, Al-Homoud and Tahtamor, 2000,
Heidan and Roudsari, 2009). On this basis, the probability
density function of probabilistic parameters such as sand
mtemal friction angle, soil specific weight and shear wave
velocity was assumed to have normal distribution. So the
mean values for probabilistic parameters based on dense
sand specifications (As shown m Table 1) are selected
and a standard deviation of 10% and normal distribution
are assumed.

The reliability was calculated separately, for various
performance levels of 100, 95, 90 and 80%. For each of
these performance levels, after determining the reliability
of points P1 to P 6, by using Eq. 6 with equal weights, the
reliability of the pipeline network is presented. In the case
of 100% performance, the occurrence of local buckling in
the pipes 1s assumed as failure. However, m the case of
80% performance, a more than 20% reduction of the pipes’
hollow section area is considered as failure. The obtained
results are observed n Fig. 11.

From these graphs, it can be concluded that:

* For D, D;<60 cm the amount of strain in the pipes
does not reach the amount required for the start of
local buckling and local buckling does not occur at
any point

¢+ For D, D,<90 cm created damage in the network is
very little and its performance 1s above 95%

*  ForD, D,<110 cm the network performance 1s above
90%

*  ForD, D,<140 cm the network performance 1s above
80%

1 T T U U 1 1
0 2000 4000 6000 8000 10000 12000 14000
Maximum strain (Neural network)

Fig. 10: Maximum strains from finite element analysis in
comparison with trained NN outputs for 10
random combinations m pipelines M1 to M5
(*1E-6)

Effect of the vertical component of the earthquake
displacement on the reliability of the sample pipeline
network 13 more than horizontal component.

For determiming the contribution of probabilistic
parameters on the reliability of the sample pipeline
network, sensitivity analysis was performed. Tmportance
measure of a probabilistic parameter which defines as
derivative of network reliability related to that parameter,
represents the effect of that parameter on the network
reliability (Levitin and Lismansky, 1999). For the sample
pipeline network, shown in Fig. 8, importance measure of
the probabilistic parameters was determied. These
probabilistic parameters include angle of the soil internal
friction, soil specific weight and the shear wave velocity.
In determining the importance measure, sunultaneous
effect of horizontal and vertical displacements with
amplitude of up to 100 ¢cm was also considered.

The obtamed results for the soil mtemnal fricton
angle can be observed in Fig. 12. This figure shows that
the soil internal friction angle does not have an equal
effect on the network’s reliability. For example, by varying
the friction angle from 31 to 32 degrees, the network
reliability will increase. However, changing it from 35t0 36
degrees, will result in a decrease i the network reliability.
The results show that the soil internal friction coefficient
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> 0.6

Reliabilit

Reliability

Fig. 11 (a-d): The reliability of the sample pipeline network against vertical and horizontal peak ground displacements
(cm) for a: 100% performance, b: 95% performance, ¢: 90% performance and d: 80% performance
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Fig. 12: Vanations of the selected network reliability against the mternal friction angle of soil

has a stronger effect on the network reliability compared
to the soil specific weight and the shear wave velocity.

CONCLUSION

Based on the calculations it can be claimed that the
occurrence of local buckling and the reduction of the
pipe’s hollow section area m the mam and branch pipe 1s
possible but 1s unlikely to happen at junctions; although
few points at the junction may experience yielding. By
mvestigating a sample network according to the proposed
algorithm, its reliability against the Northridge earthquake
records was calculated. It is observed that the effect of
the vertical component of the earthcualke on the reliability
of the sample pipeline network was more than the
horizontal component. For simultaneous horizontal and
vertical displacements of low to medium amplitudes
(around 60 cm), local buckling did not occur at any point
of the pipeline. However, for larger amplitudes of about
140 cm, local buckling occurred which reduced the
pipeline network efficiency to 80%. Therefore, under the
effect of earthquake wave propagation with relatively
large amplitudes, limited damages can oceur m the steel
buried pipeline network. Sensitivity analyses with
respect to different probabilistic parameters showed that
the soil internal friction angle had greater effect on the
sample pipeline reliability, rather than the soil specific
weight or the shear wave velocity.
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