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Estimations on the Minimax Distribution using Grouped Data
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Abstract: Tn this study, first we derived classical estimators for the shape parameter of the minimax distribution
using un-grouped data and also consider relationship between them. We compare the classical estimators based
on their mean squared errors (MSE's). Then, we obtain classical estimators of the shape parameter of thus
distribution under grouped data. Tn all cases, we considered both point and interval estimations. These the
point and interval estimations are compared empirically using monte-carlo simulation.
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INTRODUCTION

In various fields of science such as biology,
engineering and medicine it is not possible to obtain the
measurements of a statistical experiment exactly but is
possible to classify them into mtervals, rectangles or
disjomt subsets (Al Odat and Al-Saleh, 2000
Heitjan, 1989; Surles and Padgett, 2001, Wu and Perloff,
2005; Pipper and Ritz, 2007). For example, in life testing
experiments, we observe the failure time of a component
to the nearest hour, day or month. Data for which true
values are known only up to subsets of the sample space
are called grouped data. Tn general grouped data can be
formulated as follows: Let X, X,...., X, be a random
sample from the density £ (x;0),x € ¢, 0 e @and ¥, ¥s....,
Y De a partition of the sample space ¥ and N, = the
mumber of X/'s that fall in y; forj =1, 2,..., k+1. The set of
pairs {(%, Ny, (e, Nisy)}d 18 called grouped data. The
grouped data problem 15 to use these data to draw
inferences about the parameter 8. Since, we don’t have
complete information about the sample, then there will be
a loss m the information due to the grouping.
Schervish (1995) shows the following:

T (8) =T,(8) + B, [Ty, (B1Y) ]

where, 1;(8) and 1,(8) are the fisher's information number
obtained from X and XY, respectively and:

B, [15 (0100
is the conditional score function. If we replace Y by the

grouped sample n= (N, N,,..., Ny.,), then L () 2L @ for all
0, which means that the information in the sample X

about 6 is reduced to L, ® because of grouping. Kuldorff
(1961 ) considered non-bayesian estimation from grouped
data when the data come from normal and exponential
distributions. Al Odat and Al-Saleh (2000) considered the
Bayesian estimation from grouped data when the
underlymg distribution 1s exponential. Alodat ef al. (2007)
obtained Bayesian prediction mtervals from grouped data
when the underlying distribution is exponential.
Aludaat et al (2008) obtained the bayesian and non-
bayesian estimation from grouped data when the
underlymg  distnibution 18 Burr type X. Also,
Shadrokh and Pazira (2010) obtained the classical and
Bayesian estimation from grouped and un-grouped data
when the underlying distribution 1s Exponentiated Gamma.

Despite the many alternatives and generalizations
(Kotz and van Dorp, 2004; Nadarajah and Gupta, 2004), it
remains fair to say that the beta distribution provides the
premier family of continuous distributions on bounded
support (which 15 taken to be (0, 1)). The beta distribution,
Beta (a, b), has density:

-0 0ex<l

g(x:a,b) =B(a,b)

where, its two shape parameters a and b are positive and
B (.,.) 1s the beta function. Beta densities are unimodal,
uniantimodal,  increasing, decreasing or constant
depending on the values of a and b relative to 1 and have
a host of other attractive properties. Jones (2007) looks at
an altemative two-parameter distribution on (0, 1) which
he has called the minimax distribution, Minimax x (4, 0),
where its two shape parameters A and 0 are positive. It
has many of the same properties as the beta distribution
but has some advantages i terms of tractability. Its
density is:
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feoh B)=40M (1N, O<x<1, A,6=0 (1)
And 1its the distribution function 1s:
Fix; A 0)=1-1-x"% O<x<l, A 6>0 (2)

This is not entirely new and alert readers might
recogmize 1t in some way but it seems that this distribution
has not been mvestigated systematically before nor has
its relative interchangeability with the beta distribution
been appreciated. For example, minimax densities are also
unimodal, uniantimodal, increasing, decreasing or
constant depending in the same way on the values of «
and 6. In this study, without loss of generality we take
A =1 and we consider the un-grouped and grouped data
problems when the density f(x; 6) is Minimax (6), the
Eq 1.

CLASSICAL ESTIMATIONS BASED ON
THE UN-GROUPED DATA

Here, we obtain the classical estimators of 6 and
compare these estimators based on their mean squared
errors (MSE's). Also, we present the confidence intervals
for 6.

Classical point and interval estimations: Let X, X,...., X,
be a random sample from density (1). The likelihood
function is given by:

8-1

L(B)mﬂn[g(lfxi)} (3)
Then the log-likelihood function is:
£(B)e nln9+(9—1)§';ln(1—xl) 4
Hence:

4@ n &L
" +3hd-x)=0

i=1

Thus the MLE of 0 1s:

- n

Bype=— =
~¥Ina-X,)
i=1

)

==

where,
T=-ZIn(1-X)

For the more details see Shadrokh and Pazira (2010).

Here, we obtain the Uniformly Minimum Variance
Unbiased Estimator (UMVUE) of 0. Since family of
density (1) belongs to an exponential family, therefore,
statistic T 1s a complete sufficient statistic for 0. 1t is easy
to show that statistic T 1s distributed as gamma
distribution with parameters n and 1/6, with the density
g =0"T @) '"t""e® t=0,0=0. Thus:
€]
-1

B

Hence, the UMVUE of 0 1s:

Hyyue =

B =" ®)
T

We can find the minimum mean squared error
(MinMSE) estimator in the class of estimators of the form
wT. Therefore:

MSE, (%):E[(%fﬂ)g]:Var(%)+[E(%)79]2

Whereas:
o T(n+r1)
E,(T"= 9'1"(n)’n+r>0
thus:
u, gy alm-1  ub
E(T)qu(T )=ub T 0l
and:
u . gy ul e
Var(?)=u Var(T )—m
then:

u, u’ u :
MSE, () =0 {(n—l)z(n—2)+{(n—l)l] (7
=r{u)

The derivative of 1 (u) is:

r'(u)=92|: 22“ +2[ u —1][ ! ﬂ
m-0'(n-2) (n -1) (n-1

=0

that thereby u = n-2. Thus, the Min MSE estimator of 0 1s:
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3 n-2 ®

From Eq. 7, the MSE of the classical estimators of 6
are calculated as follow:

n+2) g

MSE, B, ;) = P

~ p?
MSE, (6 =
6( UMVUE) n— 2
and:
n o*
MSE, (0 =
B( MmMSE) n _1

For the more details see Shadrokh and Pazira (2010).
Tt is easy to show that:

MSE; Bz ) < MSEq By ) < MSEg (B0

Now, we find a 100 (1-1)% confidence mterval for 0
with obtain L and U, where, P (L<6<U) = 1-1.

Let X, ¥X,,..., X, be a random sample from Minima
x (0). Since

1
T~ I"(n,g)
thereby 20T~y (2n), thus:
P{xin(l—gk 2eT<x§n(§)}=1—r
or:

T

Kaall = E)
P[ <8<
2T 2T

Therefore a classical 100 (1-1)% confidence mterval
for 8 is given by:

T T
Xgn - E) ?an (E)

1
n > n 1
“2Zln-X) 2Zhd-X,)

CLASSICAL ESTIMATIONS BASED ON THE
GROUPED DATA

Here, we obtaimn the MLE estimators of 6 and also the
fisher's information number when the data given in

groups. Also, we use the fisher's information number to
construct a asymptotic confidence interval for 6.

Likelihood function and MLE: In this subsection, first we
derive the likelihood density based on the grouped data.
Let X, X,..., X, be a random sample from Minia x(6).
Assume that the sample space of f (x; 6) is partitioned
mto k+1 equally-spaced intervals as follows. Let
L=1[G-1)8,38],j=1.., kand I, = (kd, o), 80 If N,
denotes the number of X's that fall inT, j =1, 2, k+1,
thenn=N+.+N,,. Let:

P =P,(6) = P(Xel)=P((j- 1S <X < j5)
:(17(17(1'5)“)9)7(17(17(3'71)“5“)3)
=1 G-vE) - (1- G’
forj=1,., kand P, = P, (8) =P (X>kd) = (1-k* 5.
If we let A =log (1-{j-1)"8%), then p =¢™ — ™=, for

j=1,.,kand p, =¢*** . So the density of n = (N, N,,...,
Ny..) is given by the multinomial distribution as follows:

n!

f(n;0) =

Ty 3l
L

nl.n ! (9)
Sya [ 6h I8 )
_ Ceenm 4l H[ee i 66 J+ ]

by

where, C is a normalizing constant.

In contimue, we find the MLE of 6 based on the
density Eq. 9. To do this, we maximize the log-likelihood
function:

L
log f(n;0) = constant + En] log(e®® — ™"y 4 n,, AL,

The first derivative of the log-likelihood is:

84 84

BIng@;e) X A]e J_A]He "
=Zn +0,,
ae prt 1 eaA] 76““ -+

A (10)

k+

The M.L.E for 0 1s the solution of & log f (n; 0)/50 =
0.Sothe M.L.Eis & such that:
I I
%an:nMAM (11)

=l eaAj _ eBAjH

We use the notation 8, to denote the ML.E of 6
obtained from the grouped data. We can solve Eq. 11 by
Newton-Raphson method. Hence, solution of the
equation is:

h(®,)
h'(e)

i

Ciz0L2.. (12)

e+1:e

i i
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Where:

Biby B; b 5
Ae A e

k .
h®)=%Xn *——F-——+n,, A
( 1) E{ i ea)A] —CBJAN kH R

And:

(A — A P ettt
] JH

, K
h (ei):_gn] (ea)A] _ee)AM)Z

Here, the initial solution 8, should be selected from
the M.L.E of 6 based on the un-grouped data, Eq. 5.

Fisher'sinformation number and confidence interval: To
find the fisher's information number contained in the
grouped sample about 0, we find the expectation of the
second derivative of the log-likelihood. So:

2 : .
PO 4y )
Where:
_ 2 BlA kA
(0= BAnye T

(eaAJ 7eBAJ+1)2

If I (0) denotes the Fisher's information number from
grouped data, then:

__p| ¥ leef(m;)
I.(&)= E[ e }

and since B[N ] = nP,, thus:

IG(G):E{EIR',INJ.‘P](O)}
. 14
LA ALy v
*“]2:"1 & _oEm

Using 1 (0), we can find a large sample (1-a)100%
confidence interval for 6 as follows:

éMG iz1-mﬂﬂc (’éMG)il (1 5)

Simple calculations can show that the fisher's
information number about 8 in a random sample X, X,,...,
X, from Eq. 1 is T (6) = n/6°,

Now, we compare all these estimators in terms of
biases and mean squared errors (MSE's), using monte-
carlo simulation.

Table 1: Biases and Mean Squared Emors (MSE's) of the point estimates
and lengths of the interval estimates from the un-grouped and
grouped data, when k=4, 5=1, 0 =35 and t = 0.05 (Upper value
in each cell refers to MSE and lower value to Bias)

n él\'I:L‘E éUMV'UE éMmMSE CL ABMLBG CLG
10 1.634 1.257 0.961 2.238 1.893 2.862
10 0.383 -0.011 -0.689 0.455
15 1.143 0.976 0.747 1.926 1.584 2.317
15 0.339 0.009 -0.541 0.403
20 0.825 0.562 0.448 1.628 1.175 1.954
20 0.270 -0.005 -0. 449 0.361
25 0.665 0.518 0.402 1.501 0.901 1.844
25 0.215 -0.003 -0.391 0.294
30 0.562 0.427 0.377 1.279 0.793 1.579
30 0.167 -0.003 -0.278 0.207
50 0.287 0.194 0.179 0.963 0.459 1.263
50 0.105 -0.001 -0.192 0.175

CL: 95% confidence length. CLG: 95% confidence length under grouped
data

SIMULATION STUDY

The estimators 8,5, yme and 8y, are the classical
estimations of the shape parameter of the Mimmax
distribution obtamed from the un-grouped data.
Meanwhile, 8, is the MLE estimator of 6 based on the
grouped data. We also use the notations CT. to denote the
95% confidence length for 6 based on the un-grouped
data and use notation CLG to denote the 95% confidence
length for 8 based on the Grouped data.

Our main aim is to compare these estimators in terms
of Biases and MSE's. As mentioned earlier, 8, and hence
its MSE can not be put in a convemient closed form.
Therefore, MSE's of the estimators are empirically
evaluated based on a monte-carlo simulation study of
1000 samples. We generated these samples from Mimmax
distribution with 6 = 5 by using newton-raphson method
by MATLAB. The sunulation study was carried out with
sample size n = 10, 15, 20, 25, 30 and 50. We put these
samples into five mtervals (k = 4) with 8 = 1. All the
results are summarized i Table 1.

CONCLUSION

In this study, we obtained classical estimators for the
shape parameter of the Minimax distribution based on the
grouped and un-grouped data. We considered both point
and interval estimators. Our observations about the
results are stated in the following points:

»  Table 1 shows that the classical estimates based on
the un-grouped data have the smallest estimated
MSE's as compared with the classical estimates
based on the grouped data. It 1s immediate to note
that MSE's decrease as sample size increases. On the
other hand the MLE's are overestimation, this 1s true
for both un-grouped and grouped data but UMVUE's
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and the Min MSE estimates are underestimation.
Meantime, the confidence intervals work quite well
unless the sample size 1s very small and this 13 true
for both un-grouped and grouped data

¢ Whereas, MLLE estimator work quite well, therefore
we suggest to use MLE method for estimating the
shape parameter of Minimax distribution and this is
true for both un-grouped and grouped data. In
general, the estimator yield of the grouped data work
very well. Therefore, we can use the estimator
presented when the data given mn groups, for example
m life testing experiments
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