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Prediction of Supersonic Flow over Compression Corner
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Abstract: Numerical mvestigation of supersomec flow over two-diumnensional compression corner. The laminar
viscous and mviscid flow equations were discretised using fimite different technique and the computer program
code was developed using MATLAB. The analysis was conducted for corner angles of 5 to 20° and the flow
velocity was varied from 2.5 to Mach 3.5. In the current study, we found that the magnitudes of peak pressure
and recirculation region on the ramp were significantly affected by the flow velocity and corner angles. Results
obtained were validated by using analytical solutions as well as from previous researchers and they are found

to be in good agreement.
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INTRODUCTION

The occurrence of supersonic/hypersonic flow over
compression corner can be found on many practical
high-speed flow applications, to name a few, the control
surfaces (such as elevons, wing- and body-flaps) and air
intake compression ramps of the air-breathing propulsion
system on re-entry vehicles as well as high-speed
aircrafts. The dramatic significance of such phenomenon
in application have induced much attention from many
researchers, hence lots of related studies,
experimentally or numerically, have been conducted
extensively over the past few decades.

As the high-speed flow pass through the
compression corner, it would first experience compressive
distrbance and subsequently its streamline is deflected,

either

accompanying by the formation of oblique shock wave.
The development of shock wave can be elucidated as
followed, the disturbance waves caused by the corner
would try to propagate with sonic speed to surrounding
regions, including directly upstream, for communicating
the changes of energy and momentum to other regions of
the flow. Nevertheless, since the incoming mainstream is
supersornic/hypersonic, the disturbance waves could no
longer travel upstream. Instead, they would coalesce a
short distance ahead of the corner into a thin layer which
is in fact the shock wave itself. This case is particularly
true for mviscid flow, where the pressure of the flow
increases discontinuously across the shock wave.

In reality, the viscosity of the flow exists and must
also be taken into account; thus boundary layer would

form on the surface due to the viscous nature of the flow
(no-slip condition). In the presence of boundary layer, the
pressure rise along the surface does not occur abruptly
since the disturbance could travel upstream through the
subsonic region near the wall; rendering the boundary
layer to be subjected to a rapid yet continuous pressure
change. For sufficiently strong shock, the interaction
between shock wave and the boundary layer would lead
to another mteresting phenomenon, i.e., the separation
and reattachment of flow as well as the formation of
recirculation region around the corner. In this case, the
boundary layer separates ahead of the corner and
eventually reattaches downstream of the corner which
gives rise to a recirculation bubble in the shape similar to
a small-angled wedge. Hence, the compression process
happens in two stages, first through the separation region
and then through the reattachment region, yielding
separation shock and reattachment shock, respectively
(Dogrusoz and Kavsaoglu, 2001).

Holden and Moselle (1969) had
experimental research for both laminar and turbulent
shock wave-boundary layer interactions from supersonic
through hypersonic regime. The results established that
the upstream mfluence rises with the ramp angle and
decreases with Mach number and 1t 1s also affected by
Reynolds mumber as well (weakly in fully turbulent mode).
Further experimental studies demonstrated that the
upstream influence and separation length (indicating the
level of intensity of shockwave-boundary layer
interaction) increases with the ramp angle (for fixed Mach
and Reynolds numbers) and decreases with Mach number

conducted
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(for fixed ramp angle and Reynolds numbers). Similarities
are observed in the overall flow features for both laminar
and turbulent conditions, the major differences bemng the
mteraction extent (ie. characteristic scale) and the
pressure and thermal loads (i.e., the strength).

Carter (1972) had conducted the
mvestigations for the supersonic laminar flow over a

numerical

2-dimensional compression comer. The steady-state
solutions were obtained by marching the unsteady
Navier-Stokes equations over time. He employed the
fite-difference method proposed by Brailovskaya (1971)
which 1s first-order accurate in time and second-order
accurate in space. Besides, variable grid formulation by
Cebeci et al. (1970), where the grid is expanded at a
constant rate form the wall, was 1imposed. The
experimental results by Kubota ef al. (1968) were utilized
to compare with the numerical solution and found to be in
good agreement. On the other hand, Hung and
MacCormack (1976) adopted an efficient time-splitting
finite difference scheme which 1s second-order accurate in
both time and space to obtain steady state solutions of
Navier-Stokes equations for supersonic and hypersonic
laminar flows over a compression comer. They obtamned
favourable comparisons with the previous calculations
and experiments such as by Holden and Moselle (1969)
which indicated the reliability of their results.

Numerical mvestigation of the similar problem had
also been conducted by Dwoyer (1973) with the purpose
of developing a reliable solution technique for the
shock-boundary layer interaction problem applicable over
a wide range of low parameters. In this case, he utilized a
finite-difference interacting boundary layer scheme.
The boundary layer equations were coupled to the
mviscid free stream by the tangent wedge relationships.
To recover the profiles of reverse flow, the method
15 somewhat adapted followmng the work of
Werle and Bertke (1972), in which the boundary condition
on the continuity equation was applied at the outer edge
and this value 18 cycled until the prescribed wall boundary
value 1s met. In addition, Dogrusoz and Kavsaoglu (2001)
had simulated the 2-dimensional hypersonic compression
corner by employing Reynolds-Averaged Thin Layer
Navier-Stokes equations for shock capturing purpose.
Their results reported that the maxima in the pressure and
heat transfer distributions increase with the corner angle.
Furthermore, the separation region would also become
larger for increased comer angle. The computed pressure
and Stanton munber were compared with the experimental
results from Malinson et al. (1992) and found to be in
better agreement for attached flow regions while
discrepancies were observed for locations covered with
large separation zone. The computed shock wave angles

were also found to be very close to the results from
oblique shock theory.

The complexity and design challenges owing to these
phenomena demand a thorough understanding of
controlling measure and the quantitative prediction. The
experimental investigation of Shock Wave-Boundary
Layer Interaction (SWBLI) around the compression corner
would generally demand rather extensive preparation and
sophisticated equipments or facilities in the laboratory
due to the requirement of high-speed flow. In contrast,
numerical investigation or Computational Flud Dynamic
(CFD) offers much ease and convenience in the sense that
the numerical experiment can be carried out to attain
insight of the behaviour of the problem. Hence, in the
present work, the supersonic flow over the compression
corner will be investigated numerically for both steady,
inviscid flow and steady, laminar flow cases. The effect of
changes of velocity (Mach number) as well as ramp angle
on the flow field properties will also be simulated and
examined. Validation would be made using analytical
approach available whenever possible to conduct a
sensible checking on the result. Comparison will also be
made with the results from the previous studies for further
validation of the data.

Numerical modeling: The general Euler equations will be
adopted as the governing equations in algorithm
development of the MATLAB code for mwviscid case
which are rewritten as follows:

V. (pv)=0 (1)
V-(puv):f?ﬁp (2)
V-(pvv):—% (3)
v d(up) _ d(wp)
V-{p[e-ﬁ—;jv}:— g _T (4)

The grid generation for the present case is shown
Fig. la. The physical plane adopts a Cartesian coordinate
system. The swrface including the compression corner
forms the lower boundary in this physical plane. The
wnflow boundary 1s placed at x = O and the outflow
boundary 1s at x = L. A horizontal line 15 chosen at the
upper boundary at y = H. For computation using
finite-difference scheme, such plane has to be converted
into uniform rectangular-grid of computational plane, as
shown m Fig. 1b. The computational plane is defined by
£-1 coordinate system.
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Fig. 1 (a-b): (a) Physical plane and (b) Computational
planes for the numerical solution of the
inviscid supersonic flow over compression
corner problem

Fig. 2. Abbett’s boundary
mviscid flow

conditions for a steady

Abbett’s boundary condition (Anderson, 1995) is
applied at the wall to ensure the inviscid flow to be
tangent to the wall. The detailed procedures are illustrated
m Fig. 2.

The calculated velocity make an angle ¢ at the wall,
where ¢ = tan™' (v/p). To correct the calculated velocity
to ensure its tangency on the wall, assumes that the
supersomic flow of v, 1s rotated through a local centered
Prandtl-Meyer expansion wave so that the velocity vector
1s tangent to the wall. This yields a new velocity vector
V.. which will be taken as the actual velocity tangent to
the wall.

For the case of supersonic, viscous laminar flow over
the compression corner, the governing equations can be
written as follow:

@+B(pu)+ a(pv):0 (3)
at

(6)

OE du(E+p) (E+p) @ oT) d( oT
— = + k
ot ox oy ox

d
+&(m:xx +vrxy)+—(uryx +vrw)
where:
rxx=m§-§u{g+%] ©)
%:%:%§+%J (10)
Loy 2 fou v 11
e ﬁ{&+@} an
E:p&+£;;i] (12)

Moreover, the air 1s assumed to be 1deal gas and 1s
viscous in nature. Therefore, ideal gas equation and
Sutherlands semi-empirical equation are employed as well
for the algorithm development:

p=pRT (13)
and:
3

B _[TPT+S, (14)

u \T, ) T+
Where:
n, =1.7894 107
T, = 288K
8, =110K

The type of grid for the viscous case is shown in
Fig. 3. Notice that the grid 1s denser near the bottom of
the wall in order to capture the flow field characteristic
near the wall. The physical plane 15 then transformed into
the computational plane of umform rectangular grid which
is suitable for the finite difference computation.

Since, the problem 1s a marching typed problem, the
flow properties at each point must be set at t = 0. In this
case, the properties at each grid point are imtialized at free
stream values, except for the points on the wall whereby
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Fig. 3 (a-b): (a) Physical plan and (b) Computational
planes for the numerical solution of the
viscous laminar supersonic flow over
compression corner problem

no-slip boundary condition and the wall temperature are
imposed. Other boundary conditions are as shown in
Fig. 4. The free stream condition is applied on the left of
the domain to model the incoming supersonic flow. Wall
conditions are applied at the lower boundary of the
domain, whereby the no-slip condition would be imposed
at this boundary due to the viscosity of the fluid. All
other properties at the other boundaries are extrapolated
from the interior points. The extrapolations from the
interior are performed by using the two immediate
neighbouring points.

In the present study, the equations are discretized
using explicit MacCormack scheme with predictor-
corrector step in the form of finite difference. Since the
scheme used is of explicit formulation, the time step used
has to satisfy the stability criterion. To determine the
appropriate size of time step, the following version of
Courant-Friedrichs-Lewy (CFL) criterion is adopted
(Anderson, 1995):

1

u. V.. ) -
ac |l bl O 1 ) as)
AX  Ax WA Ay Ax® Ay

U = max| >——— (16)

u, v, p, T ~Ectrapolated from the interior

e—U, v, p, T

Free ~Ectrapolated
stream: from the
u=uy interior

v=0
T=Ty
P=p«

N u=o0

p=0

Wall comditions: T = Ty = Free stream stagnation temperature
p~Extrapolated for the interior

Fig. 4: Boundary conditions of the domain
At =min[Kat] (17)

The solution 15 marched from imtial condition until
steady-state condition, where the deviation of the
primitive variables from the previous time step 1s less than
107"

Problem physics and numerical results: In the previous
section, we have discussed a numerical approach to
predict  supersonic  flow over two-dimensional
compression corner. This section will present the results
obtamed from the simulation of both mviscid and lammar
cases. For the both cases, the pressure profiles will be
plotted to mvestigate the effect of variable corner angles
and free stream velocity (Mach number). Validation from
other sources will also be provided.

Figure 5 shows the Mach number contour plot for the
inviscid supersomic flow over the compression corner.
Notice that there 1s oblique shock exists on the ramp and
an abrupt change in flow velocity occurs across the
shock. When the flow past over the compression corner,
the flow streamline would be deflected upward, through
the mamn bulk of the flow above the surface. This
introduces compressive disturbance onto the flow. The
disturbance signals would attempt to travel with sonic
speed to the surrounding regions (upstream and
downstream) to communicate the changes of momentum
and energy to the nearby region. However, due to the
supersonic flow of the free stream, tlus disturbance
signals 18 unable to travel upstream. Rather, they would
be carried downstream and form a thin layer at a short
distance ahead of the comer which could be visualized as
the shock wave.

Figure 6 shows the pressure profile for the inviscid
flow of Mach 3 over the compression comer of variable
angle. Note that an excellent agreement 1s found between
the analytical results with the numerical results, except
that there are some numerical oscillations exist on the
curve near the corner which quickly diminish as progress
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Fig. 5: Mach number contour plot for inviscid supersonic
flow over compression corner of case 15 degree
and free stream of Mach number 3
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Fig. 6 Pressure profile for the inviscid flow of Mach 3
over the compression corner of variable angle

further from the corner. These oscillations would be due
to the second-order nature of MacCormack scheme which
tend to introduce oscillation around the discontinuity.
Such discrepancies may be minimized by adopting other
method such as upwind scheme to reduce the oscillation
around the discontinuity. From Fig. 6, it can be observed
that higher corner angle yields ligher pressure as the flow
passes through the compression corner. This may be
elucidated by the fact that higher corner angle introduces
larger compressive disturbance to the flow, hence there
would be a larger momentum change as the flow pasts
over the comer which in turn mduces larger pressure on
the ramp.

In addition, the pressure profile for variable free
stream velocity (Mach number) at comer angle 15 degree
1s presented as well on the Fig. 7. Again, the numerical
result is found to agree very well with the analytical
solution, despite of the numerical oscillation near the
comer. It can be seen that higher free stream velocity
would mtroduce larger pressure on the ramp. This 1s due

35 - . : - -
Mach 3.5
30
Mach 3.0
25 | Mach 2.5
—
=
20
15 - | -
10 .

08 10 12 14 16 18 20
v/L

00 02 04 06

Fig. 7: Pressure profile for variable free stream velocity
(Mach number) for inviscid case at corner angle 15

degree
10 ' Mach No. contour plot
0.9 3.0
o8 s
06 Supersonic Region
. L 20
3 05 |
0.4 15
0.3 1.0
0.2 Fubacie Bound / 0.5
3 ey Luyer Raglon .
0.1 > .L p—
0.0 :
00 02 04 06 08 10 1.2 14 16 18 20

v/L

Fig. 8: General flowfield characteristic of the laminar
supersonic flow over compression corner

to the higher momentum possessed by the flow of higher
velocity and hence greater umpact and pressure on the
ramp as it flows over the corner.

Next, the flowfield characteristic of the laminar
supersonic flow over compression comer will be
investigated. From Fig. 8, notice that there exist both
regions of supersonic and subsonic boundary layer i the
domain, as opposed to the case of inviscid supersonic
flow discussed previously. Such situation arises due to
the fact that the air itself 1s viscous in nature which will
tend to stick on the wall (no slip condition) as it passes
through the flat plate and the ramp. As a result, boundary
layer is thus formed on the wall. A closer view focus on
the region around the comer 1s now taken, as shown in
the Fig. 9. The leading edge shock arises due to the fact
that the viscous flow from the farfield detects the flat plate
as an obstacle and compressive disturbance would thus
be generated, forming the leading edge shock. Notice that
separation of flow occurs at the upstream boundary layer
of the corner. Such phenomenon occurs due to the lack of
sufficient momentum adverse pressure gradient induced
by the comer. This results in the formation of recirculation
region and this causes the boundary layer to thicken as
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Fig. 9: Closer view on the region around corner
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Fig. 10: Velocity profile across the recirculation region

well. Along the shear layer, the flow is accelerated by the
action of wviscous forces until it regains sufficient
momentum to overcome the second pressure increase at
the reattachment downstream. Overall, the flow experience
two main compression stages, i.e., at the separation and
reattachment regions which hence mduces the separation
shock as well as reattachment shock.

To gamn closer look on the recirculation region, a
section at the corner is taken to observe its velocity
profile across the recirculation region, as shown in
Fig. 10. From the velocity profile, it can be seen that there
15 a negative component of velocity which clearly
indicates the reverse flow portion of the recirculation
region. Notice also that further across the boundary layer,
the velocity profile 1s approaching the free stream velocity
which 1s similar to the case of typical boundary layer. The
general trend of the pressure profile for the laminar
supersonic flow over the compression cormner is now
mvestigated.

Figure 11 shows the pressure profile for the case of 15
degree corner angle with free stream of Mach 3. For the
inviscid case, there is a sharp rise of pressure over the
comer. On the other hand, the pressure profile for laminar
case Increases 1n a progressive manner. This can be

12

14 16 18

Inviscid solution
g (Abrupt increase)

. g

p/p

Laminar solution
(Progressive rise)

Fig. 11: Pressure profile for the case of 15 degree corner
angle with free stream of Mach 3

explained by the existence of subsonic boundary layer
near the wall which allows the compressive disturbance
signal (pressure change) to be propagated and felt by
both the upstream and downstream region of the corner,
hence the pressure would increase in a more gradual
manner as opposed to the abrupt mcrease for inviscid
case.

There are also several other characteristics of the
pressure profile worth to be noted. From Fig. 12, the
existence of recirculation 15 denoted by the pressure
plateau in the profile, where the pressure remains
relatively constant for this region. On the other hand, the
separation and reattachment poimnt are indicated by the
inflection pomnts. Notice that the peak pressure shoots
higher than that of the inviscid case. This phenomenon
may be elucidated as follows. The recirculation region
near the corner 18 separated from the main flow over the
compression cormer, thus it somehow acts as a wedge at
the comer. Therefore, the flow would experience two
stages of compression, i.e., immediately before the wedge
(separation pomt) and right after the wedge (reattachment
pont). The pressure on the wedge (free shear layer on top
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Fig. 12: Pressure profile for the case of 15 degree corner
angle with free stream of Mach 3, with the
indication of pressure plateau, as well as
separation and reattachment point
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Fig. 13: Pressure profile for variable angle
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of the recirculation) is relatively constant which is
somehow similar to the case on the flat plate. Due to the
two compression stages, hence it 15 not surprising that
the peak pressure for the laminar case would shoots
higher than that of the mviscid case.

Next, the effect of corner angle on pressure profile for
laminar case at free stream of Mach 3 1s investigated, as
shown in Fig. 13. Four cases were selected for the
analysis which are 5, 10 15 and 20 degree. From the graph,
it can be seen that as the angle increases, the peak
pressure increases as well. The larger compressive
disturbance introduced by larger corner angle would
account for this trend. Notice that the pressure
plateau becomes flatter for larger corner angle. This
signifies that the recirculation region 1s getting more
pronounced.

In addition, the results from MATLAB had also been
compared qualitatively with the one obtained from Carter
(1972) for the case 5 degree and 10 degree, as shown in
Fig. 14. Agam, the Matlab results agree with the results
from Carters very well, thus indicates the validity of the
prograrm.

Next,
pressure profile at comer angle 15 degree 13 discussed.
Three cases were selected, 1.e., 2.5, 3 and Mach 3.5, as
shown in Fig. 15. Note that the peak pressure increases
with the Mach number of the free stream. Tlis 1s
because higher flow velocity possesses larger
momentum, thus greater mmpact would be induced as it
flows over the cormer which therefore leads to higher peak
pressure.

the effect of free stream velocity on the

4.0
(b) )
1 20°
351
30¢F : 15°
g’. 251 | " ‘f |
: 10°
2.0 - —
o

1.0‘ A L 1 L il L L d
02 04 06 08 10 12 14 16 18 20
x/L

Fig. 14 (a-b): Comparison between results from Carter and MATLAB results
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Fig. 15: Pressure profile for variable free stream velocity
(Mach number)

CONCLUSION

This research had investigated the supersonic flow
over 2-dimensional compression corner for both inviscid
and laminar case. Analysis were conducted for the cases
of corner angle 5, 10 15 and 20 degree at free stream
velocity of Mach 3 (variable angle), as well as the cases of
free stream velocity Mach 2.5, Mach 3 and Mach 3.5 at
corner angle 15 degree (variable free stream velocity).
Numerical program had been developed using MATLAB
and the results were validated through analytical solution,
as well as results from results from previous researchers.
Several conclusions can be drawn from the study:

¢ As the corner angle increases, the pressure imposed
on the ramp mcreases for inviscid case. Meanwhile,
for laminar case, the peak pressure increases,
separation tends to occur and the recirculation region
becomes more obvious

*  As the free stream velocity (Mach number) mcreases,
the pressure acting on the ramp increases for inviscid
case. Meanwlule, for laminar case, the peak pressure
increases while the recirculation region tends to
diminish

For recommendation, other numerical schemes with
higher accuracy such as Cubic Interpolation Profile
(CIP), Total Variation Dimimishing (TVD), Essentially
Non-Oscillatory Scheme (ENO), etc., may be employed for
future research in simulating the problem for results
comparison. Besides, the problem can also be extended
mto the case of supersonic turbulent flow over
compression corner to explore the difference between the
laminar and turbulent case. Apart from obtaiming the
numerical results, it is suggested that experimental
mvestigations can be carried out in order to develop a
deeper understanding on this research.
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