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Evaluating the Ability of Modified Adomian Decomposition Method to
Simulate the Instability of Freestanding Carbon Nanotube: Comparison with
Conventional Decomposition Method
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Abstract: In recent years, the buckling of freestanding Carbon Nanotube (CNT) in the vicinity of graphite has
become of great interest for scientists. In this work, the ability of modified Adomian decomposition methods
for modeling the nonlinear instability of cantilever and doubly-supported CNT was investigated. The obtained
results were compared with those of conventional decomposition method as well as nmumerical solutions. The
critical value of CNT-graphite attraction at the onset of the instability was computed as the basic parameter for
engineering applications. Tt was found that modified Adomian method is highly reliable for simulating the
CNT-graphite interaction. On the other hands, using conventional decomposition method in solving CNT
problems might lead to physically incorrect results in some cases. These shortcomings were not observed for

modified Adomian series.
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INTRODUCTION

Carbon Nanotubes (CNT) are increasingly used in
developing nano-actuators, nano-switches, nano-probes,
nano-sensors and other nano-devices (Paradise and
Goswami, 2007, Yazdi and Mashady, 2007,
Mohammadpowur et al., 2011). Consider a typical CNT
which 13 suspended over a graphite surface. There 15 a
small gap between the CNT and the graphite surface. As
the gap decreases from micro to nano-scale, the van der
Waals mnteraction deflects the CNT to the graphite. When
the separation is small enough, the nanotube buckles
onto the graphite surface. Prediction of the instability of
CNT near the graphite surface is a critical subject in
designing CNT-based nano-devices (Koochi et al.,
2011a). A reliable trend to simulate the CNT-graphite
interaction is to apply nano-scale continuum models.
However, this approach often leads to nonlinear
equations m the form of Eq. 1 that might not be accurately
worked out by analytical methods (Koochu ef al., 2011b):

wfz8=0(n=435) ()

In recent decades, various mathematical methods,
such as adomian decomposition (Adomian, 1983
Wazwaz, 2000), variational iteration (He, 1997, 1999,
Noorzad et al., 2008; Shakeri et al, 2009, Barari ef al.,
2008), homotopy perturbation (He, 2000, 2006; Sharma and

Methi, 2011; Fazeli et af., 2008) etc., have been proposed
for solving nonlinear problems. Among these methods,
the decomposition method proposed by Adomian has
been widely used to solve stochastic systems
(Adomian and Rach, 1983; Adomian, 1983; Rach, 1984;
Jaradat, 2008) due to the convenience of the
computations. Furthermore, this method has been applied
to investigate engineering problems such as oscillation
(Momani et al., 2008), heat transfer (Chiu and Chen, 2002;
Luo et al., 2006) etc. Several investigators made attempt
to mmprove Adomian decomposition (Adomian, 1986;
Gabet, 1994). Rach (1984) proposed a systematic formula
for computing the Adomian's polynomials. Further
modification of the polynomials was also provided by
Gabet (1994). A powerful modification of the Adomian
decomposition method was proposed by Wazwaz and
El-Sayed (2001). This modification highly accelerates the
convergence of the decomposition polynomials and it 1s
applied for solving higher order boundary value problems
(Wazwaz, 2000, 2001). A modified Adomian
decomposition method was applied to simulate the static
deflection of electrostatic beam-type micro-actuators
(Kuang and Chen, 2005).

The aim of tlus study was to mvestigate the
potentials of Modified Adomian Decomposition (MAD)
1n solving constitutive equation of CNT (Eq. 1). In order
to evaluate the abilities of this method, the precision and
convergence speed of MAD is compared with those of
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Conventional Adomian Decomposition (CAD). In
addition, numerical solution 1s obtained using MAPLE
commercial software and analytical solutions are

compared with the numerical results.

GOVERNING EQUATION OF
FREESTANDING CNT
Figure 1 depicts schematic cantilever and
doubly-supported CNTs suspended over graphite with
small gap between them. With the decrease in dimensions
from micro to nano-scale, CNT deflects to the substrate
due to the van der Waals interaction between CNT and
graphite. Especially, when the separation is sufficiently
small, the nanotube becomes unstable and buckles onto
the graphite layers.
Based on continuum mechanics, the governing
equation of a freestanding single-walled CNT over
graphite surface can be derived as Koochi et al. (2011a):

2,2
Lﬂ:Rd For large number of graphene layers
g (W _dD-W)
A 4C,*NR

For small number of graphene layers

(D-W+Nd/2¥°

(2a)

Fig. 1 (a-b) A CNT over a graphite ground plane (a)
Cantilever CNT and (b) doubly-supported
CNT

W (0)= ‘L—V;(O) =0 (2b)

ci:z‘f (L)= ‘::Z‘f L)=0 (For Cantilever CNT) ~ (2€)

W)= i—‘;(L) =0 (For Doubly-supported CNT) (2d)

where, Z 15 the position along the CNT measured from the
clamped end (s) and W is the deflection of CNT. The
length of CNT is L and the imtial gap between CNT and
the ground is D. In above relation, B,z I, 0 and C; are the
CNT Young’s modulus, cross-sectional moment of inertia,
graphene swrface density and attractive constant,
respectively. The constants d and N are the graphite
interlayer distance and number of layers, respectively.
Equation 1 and 2a-d can be made dimensionless using the
following substitutions:

z=7/L (3a)
w For large number of layers (n =4}
wel® (3b)
_ For small number of layers(n = 5)
D+Nd/2
2, dnTd
w For large number of layers
_ dE;ID (3C)
» 2,2 4
M For small number of layers
E ,I(D+Nd/2)

These transformations yield:

dw__ 1, (4a)
dz* {l-w@)"

w (0)=w (0)=0(BC.For Cantilever and Doubly-supported CNT)
(4b)

w (1) =w (1) =0 (BC. For Cantilever CNT) (4c)
w (1) =w (1) =0 (BC. For Doubly-supported CNT) (4d)

Note that parameter f, in above equations, physically
corresponds to the van der Waals attraction. At the onset
of the buckling instability, the maximum deflection of the
CNT increases abruptly. In mathematical view, the slope
of w-f, curve reaches infimty when instability occurs, 1.e.,
dw/df, (z = 1)~ and dw/df, (z = 0.5)~<0 for cantilever and
doubly-supported CNT, respectively. As a convenient
approach, the values of critical van der Waals force, £
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and the corresponding CNT critical deflection can be
acquired via plotting w (z=1) vs. f, for cantilever and
w (z = 0.5) vs. f, for doubly-supported CNT. In order to
apply decomposition methods for simulating the
deflection and the mstability of CNT, the substitution
v = 1-w 1s used to rewrite Eq. 3 into the following form:

dy__ £ (5a)

dz  y(@)
yO=1,y(0)=0 (5b)
¥ (13=0,y" (1) = 0 (For Cantilever CNT) (5¢)

y()=1, v (1)=0 (For Doubly-supported CNT) (5d)

FUNDAMENTALS OF
DECOMPOSITION METHODS

Consider a differential equation of a fourth-order
boundary-value problem:

v (x) =N (xy), O<x <L, (6a)
y (0) =ty y' (0) = e, (6b)

Equation 6 can be represented as:
L™ [y (] = N (xy) 7

where, LYY is a differential operator which is defined as:

dw S
L) _ - (8a)

The corresponding inverse operator L is defined as
a 4-fold integral operator, that 1s:

L = [ [ ()dx..dx (8b)

4

By employing the decomposition method (Kuang and
Chen, 2005), the dependent variable in Eq. 6 can be written
as:

y(x)= Eyn(x):aﬂ +C(1X+%C1X2 +%sz3 +L’(IV)|:iA“} (9

n=0

where, constants C, and C, can be determined from the
boundary condition at x = I,. In above relations f,

function approximates the nonlinear f (x,y) function and it
is determined as a polynomial series (Adomian, 1983):

N(x,y):EAn (10)

In order to compute A, terms let us define f, as the
following:

)=, an

dy

Then, according to Conventional Adomian
Decomposition (CAD), A, is obtained using the following

formula:

A, =—£,(v,) (12)

n_av

On the other hand, according to Modified Adomian
Decomposition (MAD), the above can be further
presented as the following convement equations
(Rach, 1984; Adomian, 1986):

A= c(wnk,iv,) (13)

=l

Where:
Clnv)=3 TI, 0/ k0L

X kp=n

n>=0, O<i<n, 1 <p<n-v+1 and k; is the number of repetition
of the f;, the values of p, are selected from the above
range by combination without repetition.

According to decomposition methods, the recursive

relations of Eq. 6 can be provided as follows:

¥ (X) = Oy,
yl(x)=og1x+%clx2 +$ng3 + LR, (14)
Ve (X)= L [£ 1. k=1

Now, the solution of Eq. 5 can be represented as:

ea CZ2 C Z3 - e
y(z):n;yfn = +#—fnL‘W)L§Am} (15)

where, the constants C, and C, can be determined by
solving the resulted algebraic equations from B.C. at
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z =1, i.e. using Eq. 3¢ or 5d for cantilever and doubly-
supported cases, respectively.

Modified Adomian (MAD) series solution: In the case of
modified domain method:

=1 (Yu )=
C(Ll)fl (YD ):Y1f1 (Yu ),

CL2)f (¥, )+ C(2.2)f, (v, )= ¥,f, (&) + Ly (¥a)
(

=

2

2! " (16)

N

2 =C(L3) (v,) + C(2.3)F, (v, )+ C(3,3)

1
L (yu ): b (yu ) +¥,¥.4 (yu ) + EY?fa (YU)=

YQZI

f,
Y, =LCIZZ + lsz3 -2zt

_ L s 102 1.5
¥, = nfn(aclz + ﬂczz anz )
ok foXe (17
¥, ==3n(n + )f, ?‘Fzg —10n{n + 1)#1}29
. n’C, +n(n+ ?SSCI -10C%) 20
2p2 3
N n’ + 3511131 +1C, ffz“ o £+ 315;(11 +Df; 2

Therefore, the solution of Eq. 4 can be summarized
to:

2 3 4 ]

w(z):—Cl%—Cz%+f;%—Clnf“%
—Cznfn£+ Gn(n+1C” + nfn)fné+10n(n + 1)clczfn£
7 8! 9t (18)
~(n*C, +nin+1 A5, 710022))1‘3%
2 2 z" 202 3 2"
—(n +35n(n+1))fhczm+(n £ +35n(n+ D )ﬁ+...

Conventional Adomian (CAD) series solution: Tn orderto
solve HEq. 5 using CAD, the formula (12) is expanded to
obtain:

Ay =Yy
A =y,
71 n-3,2 o -n-l
Az *En(nJrl)yU Y1 nyu YQ (19)

1 e —n- -]
Ay = *gl’l(l’l +D(n+ 2y, 33"13 +nin+1)y, 2}’13"2 —¥q 13"3

Substituting relation (19) in Eq. 14, we obtain:

" a4 (20)

z
=Cnf, —,
¥ a0
7

=C,nf, ——,
¥q a0

2 2
8=_{n(n+l)fcg+nf“} z

2 1T 6 6720’

where, n = 5 holds for small number of layers andn = 4 for
very large number of layers, respectively. Therefore, the
polynomial solution of Eq. 4 1s obtained which can be
summarized to;

o o7 or z* ¢ C 2

R T S T

B S (21
—nf, 22 Clzn(n+ )fn+n—“ z

7 2 6 |8

SIMULATING INSTABILITY OF CNT

To evaluate MAD methods, typical cantilever and
doubly-supported CNTs are modeled and the results are
compared with numerical solution.

Cantilever CNT: Figure 2 and 3, respectively show the
variation of tip deflection (w (z = 1)) of typical cantilever
CNT with large and small number of layers obtained by
MAD method using various series terms (f, = 0.5). As
seen, the MAD series converges faster to the numerical
solution in comparison with the conventional series.

The centerline shape of the cantilever CNT has been
depicted in Fig. 4 and 5 while van der Waals force
increases from zero to the critical instability point. When
f exceeds the critical value, f.", no solution exists for w
and the buckling occurs. While Fig. 4 corresponds to
large number of graphene layer, small number of layer 1s
considered mn Fig. 5.

Similar behavior 1s observed for nano-actuators
(Ramezam et al., 2006), nano-tweezers (Wang et al., 2004)
and nano-switches (Zhao et al, 2003) where van der
Waals force makes the freestanding cantilever structures
unstable.

Table 1 shows the convergence of instability
characteristics (£") for cantilever CNT obtained by
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0.17 Numerical
- & - CAD
— -4 - MAD
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Fig. 2: Varation of tip deflection as a function of selected
Adomian series terms for typical cantilever CNT
with large number of layer (f, = 0.5)

0.1 Numerical
- & - CAD
— - - MAD [
n u
i n
0.09 T
[ \
[N ,l \ I“\ n
[ \
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0 2 4 6 8 10 12 14

No. of terms

Fig. 3: Varation of tip deflection as a function of selected
Adomian series terms for typical cantilever CNT
with small number of layer (f.=0.5)

-0.1 7

Numerical

0.4

0.957 (Instability)

0.5
0.0

Fig. 4. Deflections of typical cantilever CNT for different
values of £f. MAD method 13 used and large
number of layers is considered

-0.1 A

Numerical
MAD

0.0

0.1

Z 0.2 1

0.3 1

0.4

0.5
0.0

Fig. 5. Deflections of typical cantilever CNT for different
values of f. MAD method is used and small
number of layers 15 considered

Table 1: Convergence check of critical van der Waals force (") for cantilever CNT. Despite conventional Adomian, the f," values obtained by modified

decomposition series converge to those of numerical values

£ Method 3 termns 5 terms 6 terms 8 termns 10 terms Numerical
Forn=4 CAD Can’t determine  Can’t determine 2 0.8146 0.7853 0.9391
Ditference with numerical solution (%6) - - 112.9699 13.2574 16.3774
MAD 1.1551 0.9577 Can’t determine
Difference with numerical solution (%) 23.00075 1.98062 -
Forn=35 CAD Can’t determine  Can’t determine 1.6 0.6616 0.6434 0.7695
Ditference with numerical solution (%6) - - 107.9272 14.0221 16.3873
MAD 0.9360 0.7827 Can’t determine
Difference with numerical solution (%) 21.63743 1.7154 -
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This table reveals that CAD
converges to an instability value which 1s different from
the numerical one. However, this shortcoming is not
observed 1n the case of the modified series and the
instability value obtained by MAD method converges to
that of numerical solution.

The values of £ obtained using CAD series
(using 8 terms) are the same as those predicted using
Homotopy perturbation method (Koochi ef @f., 2011b) and
are very close to those predicted using Green’s function
method (Koochi et al., 2011a). Interestingly, the critical
values of CNT-graphite attraction obtained in the case of
large number of layers are the same as the critical values
of Casimir force obtained mn reference (Abadyan et al,
2010; Soroush et «l, 2010) for freestanding nano-
electromechanical actuators. Note that the dimensionless
constitutive equations are mathematically the same in

various series terms.

these two cases. However, the physical implication of £
1s completely different in these problems.

Doubly-supported CNT: Figure 6 and 7, respectively show
the wvariation of mid-point deflection for typical
doubly-supported CNT with large and small number of
layers as a function of series terms. The value of van der
Waals attraction is chosen as f, = 5 for both number of
These reveal that
decomposition can not be applied for modeling the
CNT/graphite interaction. As seen, while the MAD
method rapidly converges to the numerical solution, CAD
series diverges from it.

The centerline shape of the doubly-supported
freestanding CNT has been depicted in Fig. 8 and &
while van der Waals force increases from zero to the
critical instability point. While Fig. 8 corresponds to large
number of layer, small number of layer 1s considered in
Fig. 9.

Furthermore, Table 2 shows the convergence of £, for
doubly-supported CNT obtamned by MAD usmng various
series terms. As seen, f,’ values obtained by MAD series
converge to that of numerical value. In Table 2, only the
£ values obtained by MAD are presented since the CAD
method 1s not able to model the double-supported
CNT/graphite mteraction. In the case of doubly-
supported CNT, the instability value computed by
conventional decomposition series 1s very different from
that of numerical method.

layers. figures conwventional

the £ values of doubly-supported
CNT is considerably larger than those of cantilever one
due to higher elastic stiffness of doubly-supported
structure.  Simular  difference has  been

Interestingly

observed

0.027 Numerical
- -#-- CAD
— k- MAD
0.018- »
A
;0\
@ 00161 /)
T / \ " s
S A AN
= 0.014] AN AN
S K T \\ Y
v\ <
0.0121 i v
0.01 T T T T T .
0 2 4 6 8 10 12
No. of terms

Fig. 6: Variation of tip deflection as a function of selected

Adomian series terms for typical doubly-
supported CNT with large number of layer
(£, =3)
0.027 Numerical
- & -CAD
~-&:-MAD
0.0184
"
U
/Il \‘
\
i~ 0.0161 /l \‘
T P hy .
N / \‘ /.\ I, \\ ,I
2 ! ' I\ ;o
0.0144 A A .A_‘, A - [} L A :I
Py ’ v vy
x . v Y
\‘I, ) W
0.012 » ¥
0.01 T T T T 1
2 4 6 8 10 12
No. of terms

Fig. 7: Variation of tip deflection as a function of selected

Adomian series terms for typical doubly-
supported CNT with small number of layer
(£;=3)

between cantilever and doubly-supported nano-beams
(Koochi et al., 2010), where higher elastic stiffness of the
doubly-supported nano-structure  leads to Iugher
instability characteristics.

Note that while Fig. 6 and 7 reveal some series (Even
term series) are able to approximate the CNT deflection
(for £, values which are far from the instability point of the
system), they can not determine the instability of the
CNT. This limitation should be considered in simulations
to avoid physically worthless results.
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Table 2: The critical van der Waals force (£") for doubly-supported CNT

Force 1 terms 2 terms 3 terms 4 terms 5 terms 6 terms Nurmerical
f," (forn=4) Can’t determine Can’t determine  49.1626  Can’t determine  39.3133 Can’t determine  38.9976
Difference with numerical solution (%0) - - 22.91387 1.71085 - -
f," (forn=175) Can’t determine Can’t determine  39.8103  Can’t determine  32.1010 Can’t deterrnine

31.9301
Difference with numerical solution (%0) - 19.73499 0.427998

-0.1 5

Numerical
———— MAD

39.313 (instability)

0.3 4

0.4 4

0.5

Fig. 8: Deflections of typical doubly-supported CNT for
different values of £. MAD method is used and
large number of layers 1s considered

-0.14

Numerical

0.0

0.1 53

31.930 (Instability)

32.101 (Instability)

0.4+

0.5 T T T T 1

z

Fig. 9: Deflections of typical doubly-supported CNT for
different values of £. MAD method is used and
small number of layers is considered

CONCLUSION

In this study, the modified Adomian decomposition
methods were applied to simulate the mechamcal behavior

of cantilever and doubly-supported CNT suspending
over graphite surface. The critical van der Waals force at
the onset of the instability was computed and the results
were compared with numerical solution and conventional
Adomian decomposition.

Results revealed that the modified Adomian series
provides accurate results, converges rapidly to numerical
solution. Therefore this method could easily be utilized to
simulate the van der Waals force-induced deflection and
wnstability of CNT. Compared to modified Adomian
method, conventional decomposition might provides
computational errors in simulating CNT deflection.
Moreover the values of instability characteristics
computed by conventional Adomian series converged to
the values which differ from those obtamed by numerical
methods. Interestingly, none of the mentioned
shortcomings were observed for modified Adomian series.
Note that although some MAD series could approximate
the CNT deflection but they could not determine the
wnstability of the nanotube. This limitation should be
considered in CNT modeling to avoid physically
meaningless results.
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