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Abstract: This study investigates the problem of unsteady stagnation point flow and heat transfer over a
stretching/shrinking sheet. The goverming partial differential equations are converted mto a system of nonlinear
ordinary differential equations using a similarity transformation, before being solved numerically. Both
stretching and shrinking cases are considered. Tt is found that dual solutions exist for the shrinking case while
for the stretching case, the solution 1s unique. Moreover, it 1s found that the heat transfer rate at the surface
imcreases as the stretching/shrinking parameter as well as the unsteadiness parameter increases.
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INTRODUCTION

The study of flow and heat transfer over a
stretching/shrinking sheet 1s an important problem in
many engineering processes because 1t has many
applications in industries such as extrusion of plastic
sheets, wire drawing, hot rolling and glass fiber
production. Sakiadis (1961a, b) mvestigated the boundary
layer flow on a continuously moving swrface with a
constant velocity. Later, this work was verified
experimentally by Tsou ef af. (1967). Following Sakiadis
(1961a, b), Tsou et al. (1967) and Crane (1970) studied the
flow over a linearly stretching sheet immersed in an
ambient {luid and obtained an exact solution to the
Navier-Stokes equation. Gupta and Gupta (1977) extended
the work of Crane (1970) by mvestigating the effect of
mass transfer on a stretchuing sheet with suction or
blowing. On the other hand, the stretching boundary
problem Crane (1970) was extended by Wang (1984) to a
three-dimensional flow. Mahapatra and Gupta (2003)
considered the stagnation flow over a stretching surface
and then this problem was extended to  oblique
stagnation flow by Lok et af. (2006). Many authors such
as Carragher and Crane (1982), Elbashbesy and Bazid
(2000), Magyar1 and Keller (1999, 2000), Magyar et al.
(2001), Liao and Pop (2004) and Nazar et al. (2004)
investigated the stretching sheet problem with different
aspects, such as uniform heat flux, permeability of the
surface and unsteadiness flow and heat transfer.

Different from the stretching case, only a few works
have been done on the flow nduced by a shrinking sheet.
Miklavcic and Wang (2006) investigated the flow over a
shrinking sheet and found that the flow characteristics are
different from that of the stretching case. Fang (2008)
investigated the flow induced by a shrinking sheet with a
power-law velocity and reported the existence of multiple
solutions for certain range of the mass transfer parameter.
The non-uniqueness solution of the shrinking sheet
problem was also reported by Fang et al. (2008), when
they solved the Blasius equation for the shrinking sheet.
The flow characteristics induced by a shrinking sheet was
also investigated by Hayat ef al. (2007) and Sajid et al.
(2008) and the solutions were obtained using the
homotopy analysis method. The stagnation flow towards
a shrinking sheet was considered by Wang (2008) where
the existence of dual solutions for a certain range of the
shrinking parameter was reported He found that solutions
do not exist for larger shrinking rates and may be non-
unique in the two-dimensional case. This problem was
then extended to a micropolar fluid by Tshak ez al. (2010).
Different from the stretching case, solutions do not exist
for a shrinking impermeable sheet i an otherwise still
fluid, since vorticity could not be confined m the
boundary layer. However, with an added stagnation flow
to contain the vorticity, similarity selutions may exist.

Different from the above-mentioned mvestigations,
the present paper considers the problem of an unsteady
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two-dimensional stagnation-point flow and heat transfer
over a stretching/shrinking sheet immersed in an
mcompressible viscous fluid. To the best of our
knowledge, thus problem has not been studied before.

MATHEMATICAL FORMULATION

Consider an unsteady stagnation point flow over a
stretching/shrinking sheet immersed in an incompressible
viscous fluid of ambient temperature T_, Tt is assumed that
the free stream velocity is in the form, U_ (x,t) = ax/ (1-At)
the sheet is stretched with velocity U,(x, t) = bx/ (1-At) and
the surface temperature 15 Ty (%, t) =T AHcx/(1-At). The
x-axis runs along the sheet while the y-axis 1s measured
normal to it. With these assumptions along with the
boundary-layer approximations and mneglecting the
viscous dissipation, the goverming equations are
(Fang et al., 2011):

@+@:0 (1)
ox dy
du du du dU ouU d*u
L L Y | PR (2)
ot Yox oy ot ot ax oy
2
ar_or, or_ o7 (3)

with the boundary conditions:

u=U_,v =0,T=T, aty=0 (4)
u—U_,T—>T, as y—>eo,

where, u and v are the velocity compenents in the x and
v directions, respectively, v is the kinematic viscosity, o
the thermal diffusivity and T 1s the fluid temperature. In
order that Eq. 1-3 reduce to sumilarity equations, we
mtroduce the following similarity transformation:

_ E 172 _ " _ T*Tm 5
-n {VXJ 2w = (U)o == (3)

where, 1 18 the similarity variable and 1 1s the stream
function defined as u =, dP/dy and v = -JY/Fx, which
identically satisfies the continuity Eq. 1. Substituting (5)
into Eq. 2 and 3 yield the following nonlinear ordinary
differential equations:

f”+ﬁ“”+1—f’2+A(1—f’—%nf”)=0 (6)

ie’+fe’—f’e—A(e+ge’)=o (7

Pr

subject to the boundary conditions:

£(0)=0, f'(0)=¢, BO)=1 ®
M —1, Bn)—>0asn —
where, primes denote the differentiation with respect to
M, Pr = v/ 1s the Prandtl number, A = Aa is the
unsteadiness  parameter, € = bfAa i3  the
stretching/shrinking parameter with €>0 for stretching and
£<<0 for shrinking.

The physical quantities of interest are the skin
friction coefficient C; and the local Nusselt number N,
which are defined as:

T
- w N
f pUWZ/z’ u

_ g,
k(T T ©

where, the surface shear stress T, and the surface heat
flux g, are given by:

S 0 I L (10)
W ay " w ay -

with p and x being the dynamic viscosity and the thermal
conductivity, respectively. Using the similarity variables
(Eq. 5), we obtain:

%cf Re’’ = £*(0), Nu, /Re!> =-07(0), (1)

where Re, = U_x/v 1s the local Reynolds number.
RESULTS AND DISCUSSION

Equations 6 and 7 were solved numerically using a
shooting method. The results are given to carry out a
parametric study showing the influence of the non-
dimensional parameters, namely the
parameter A and the stretching/shrinking parameter e,
fixed at Pr=0.7
(such as air), to conserve space. For the validation of the
numerical results obtained, the case A = 0 (steady state
flow) has also been considered and compared with those
of Wang (2008) and Ishak ef al. (2010). The quantitative
comparisons are shown m Table 1 and found to be m a
favorable agreement.

Figure 1 shows the variation of the skin friction
coefficient in terms of £ (0) as a function of € for various

unsteadiness

while the Prandtl number Pr is
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A=0.01,0.1,03

£*(0)

0.4 1
0.2
0.0 1
T

-1 -0.5 0 0.5 1

Fig. 1. Skin friction coefficient £ (0) as a function of € for
different values of A

-2 A=0.01,0.1,0.3

-0 (0)

-16 4

-18 4

Fig. 2: Local Nusselt number -6 as a function of ¢ for
different value of A when Pr=0.7

Table 1: Values of £ for different values of ¢

Present results

3 Wang (2008)  Ishak et &f. (2010) A=0 A=01
-0.5 1.49567 1.495670 1.495672 1.549006
-0.1 1.308602 1.340960
0 1.232588 1.232588 1.232588 1.260923
0.1 1.14656 1.146561 1.146561 1.171193
0.2 1.05113 1.051130 1.051130 1.072329
0.5 0.71330 0.713295 0.713295 0.725457
1 0 0 0 0

2 -1.88731 -1.887307 -1.887307 -1.905564
4 -7.086378 -7.086378 -7.130017

10 e =1120,-1.22,-1.24
A=0.01
0.5 1
£=-1.24,-1.22,-1.20
Z 00 A
(=
-0.5-
upper branch
................ lower branch
‘l 0 T T T T T T 1
0 1 2 3 4 5 6 7
n

Fig. 3: Velocity profiles f* (1) when A = 0.01

4
A=0.01,Pr=0.7
3_
e=-120,-122,-1.24
) -120,-122,-124

oM

Upper branch
...................... Lower branch

Fig. 4: Temperature profiles 6 (1) when A =0.01 and
Pr=0.7

values of A. Tt is seen that the range of € for which the
solution exists increases as A increases. Thus, the
solution domain 1s widen for the unsteady flow. For a
particular value of A, the solution exists up to a critical
value of e which depends on A. Based on our
computations, £, = 1.2465,1.2536, -1.3118 and -1.4520 for
£=,001, 0.1 and 0.3, respectively. For a particular value
of €, the skin friction coefficient is higher for higher values
of A This results in increasing manner of the local
Nusselt number which represents the heat transfer rate at
the surface, as presented in Fig. 2. Moreover, Fig. 2 shows
that the heat transfer rate at the surface increases as the
stretching/shrinking parameter € increases. Figure 1
shows that the lower solution branch is attracted to (e
£7(0) = (1,0)), while the local Nusselt number 1s negative
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and unbounded as €l. As discussed by previous
authors (Merkin, 1994; Weidman et al, 2006,
Harris et al., 2009; Postelnicu and Pop, 2011), we expect
that the lower solution branch is unstable and not
physically realizable. Although, such solutions are
deprived of physical significance they are nevertheless of
interest as the differential equations are concerned. Similar
equations may reappear m other situations where the
corresponding solutions have more realistic meaning
(Ridha, 1996).

Figure 3 and 4 show the velocity and temperature
profiles for selected values of parameters respectively. It
is seen that there are two different profiles for particular
values of € (as shown in the figures) which support the
existence of dual solutions presented in Fig. 1 and 2.
Moreover, the velocity and temperature profiles satisfy
the far field boundary conditions (8) asymptotically,
which support the validity of the numerical results
obtained.

CONCLUSIONS

A numerical study was performed to investigate the
flow and heat transfer characteristics of unsteady two-
dimensional  stagnation point flow over a
stretching/shrinking sheet. The similanty transformation
reduced the partial differential equations into a system of
nonlinear ordinary differential equations, which was
solved numerically by a shooting method. The effects
of the unsteadiness parameter A and the
stretching/shrinking parameter & were obtained and
discussed. Both stretching and shrinking cases were
considered. Tt was found that dual solutions exist for the
shrinking case while for the stretching case, the solution
15 unique. The unsteady parameter A widen the range of
e for which the solution exists. For the upper branch
solution, which we expect to be the physically relevant
solution, the heat transfer rate at the surface increases as
A as well as £ well increases.
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