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The Effects of Capture Efficiency on the Coexistence of a Predator in a Two
Predators-Ome Prey Model
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Abstract: In this study a mathematical model of two competing predators sharing one prey in homogeneous
environment, with Holling type-I functional responses, was introduced. The model was formed by considering
logistic law for both prey and predator where prey abundance was used to determine carrying capacity of
predators. Stability of the equilibrium points of the system was then studied. The conditions for the
persistency which were interpreted as efficiency of search and capture, were then obtained. Numerical
simulations showed that the coexistence and extinction of the predators depend on how close the efficiency

of searching and capture of the two predators.
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INTRODUCTION

The study of interactions between species is a well
researched field in ecology. In the case of one species
(the predator) feeding on another species (the prey), a
simple model was developed to understand the
interaction. The model can be written as a coupled system
of two first order non-linear differential equations
(Giordano ef al., 2003). Non linear differential equations
are used in many fields (Taiwo and Abubakar, 2011;
Baghli and Benyettou, 2006; Prakash and Karunanithi,
2009). The standard basic predator-prey model 1s the
Lotka-Volterra system of equations (Rockwood, 2006).
The major part of existing theory on predator-prey
mnteractions 1s built on this basic model.

Extensions of the basic model were developed to
describe particular scenarios and these mvolve the
surroundings and the nature of the species involved. The
resulting system of equations  describing  the
predator-prey equations has been widely studied by many
researchers (Naj1 and Balasim, 2007). However, there 1s
still a need to improve the present models. Tn nearly all of
these models, the main question that needs to be
answered 15 whether the species can coexist.

Relative to the size of the prey, the size of the
predators might involve smaller rate of change and this
can result in competition amongst the predators
(Mallah et af., 2001, Akhtar and Khalig, 2003). This scene
can be extended by considering the presence of another
predator species preying on the same prey. Models
involving more than two species have been proposed to

describe some ecological phenomena, with very complex
dynamical behaviors exhibited (Naji and Balasim, 2007;
Lv and Zhao, 2008; Yu and Zhao, 2009; Upadhyay and
Nay1, 2009).

In this study, the dynamaical relations of two predator
species predating on a prey species were investigated.
Various research approaches were undertaken to analyze
this particular species configurations (Dubey and
Upadhyay, 2004; Gakkhar et af., 2007). The approach here
was slightly taken different from others. From the
persistency conditions of the predators, the search and
capture efficiency of the predators was defined. The
developed model and the methods of analysis were able
to answer some questions such as how the coexistence
and extinction of the predators depend on the efficiency
of the search and the capture. Several numerical
simulations were carried out in the case of a non periodic
solution.

MATHEMATICAL MODEL

According to Rockwood (2006), the diversity of
organisms and the difference in the environments have
led to different models of population growth. He added
that the search for one model or one set of models for all
population in different environments is pointless. With
this in mind, a new model with the growth rates of the
prey and two predators 1s described by the logistic law,
with the carrying capacity of the predators depending on
the available amount of prey is proposed. By using the
Holling type-I functional response to describe the
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predation of the two predators v and z on prey x, the
model can be written as:

Eofifre

dy ¥y
N Rv|l—-—- |—
A 1Y[ ky} V2

dz z
—=-wz+R,z|1-—|-c,yZ
m 2 [ kj 2

The intrinsic growth rate of prey is r.« and p measure
the efficiency of search and capture of predators, z
respectively. Tn the absence of prey x, constants u and
w are the death rates of predators y, z respectively.
R, = ejax, R, = ¢px; R, and R, represent numerical
responses of the predators y, z, respectively which
describe change in the population of predators through
prey consumption e, and e, represent efficiency of
converting consumed prey into predator births. The
cairying capacities k, = axx, k, = a,z are proportional to the
available amount of prey, as was first proposed by Leslie
(Gazi and Bandyopadhyay, 2008). ¢, and ¢, measure
intraspecific competition between the predators.

The system of Eq. 1 can be written
non-dimensional form. This can be done in many ways
but it is better that the choice of variables relate to some
key parameters. This makes the analysis less complicated
as the number of parameters is reduced from 12 to 8.
Using the following transformations of variables and
parameters:

m a

_ _ X -_ ¥ _ zZ _ kao _ ko -
t=rt, X=—, ¥=——, Z=—1, g=—"1", @=—" q:i,
k ak ak r r a,
- _% _ u _ w _ ake _ ake
q:i T=—, @=—, ¢ = g8 T, = 1552
a, r r r r
we have:

%: X(1 - x) — oxy — pxz=xJ(X,¥,2)

& (2)
o rewy - ey’ —oyz =vf (x,.2),

dz 3

T =-wz+epxz—efz —cyz=zf,(xy,2),

Equations 2 are of Kolgomorov type.

Theorem 1: The solution of the system (2) for t=0 n R?

1s bounded.

Proof: The first equation of the system (2) that represents
the prey equation 1s bounded through:
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‘;—T =x(l-x) (3)

The seolution of the equation (3) 1s:

1
1+qe™

()=

where:

1
X —1

q=

is the constant of integration. Hence x(t)+y<1, vt=0. Next,
we prove thatx(t+y(t+z(t)<L, ¥t=0. Let D(t) =
x(O+y(t)+z(t). The time derivative of the function D:

dD dx dy d=z
=— 4=+

dt dt dt dt

=((l-x)—oy —Pz)x +(-u+eux —eday—czly+(-w+efx—ePz-c,y)z

(h

However, the solutions initiating remain in
nonnegative quadrant in R’ and all the parameters are
positive; it can be assumed the following:

lii—];) 2(( XX+ (—u+eox—eoy—cz)¥ + (—w+efx—e,fz—cy)z
(5)

Tt can be concluded that:
max; {x(1-x)} =i (6)

By substituting in Eq. 5 become as follows:

dcT]t) s% +(u+eux—eoy—c)y+(—wtefx—epz—c,y)z (7

@ Si‘*’ (—uteox —eoy—cz)y +H{—wtefx—efz-cyz+D(t)-D(t)

dt
(8)
Equation & can be written as follows:
dD 1
e +D{t) = Z+ x+(-uteux-eoy—cz)yt(-wtePx—efz-cykz
()
Since x(t)<1, then:
dD 5
— +Di(t) sz +(-u+eux —eoy —z)y+(—w+epx—efz—cy)z

dt
(10)
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But:
2
maxy, {(*U+eldfqay+1)y}:w (11)
’ e ot
And:
2
maxy {(-w+ep—efz+Dz}= drep-wy (12)
’ 4ep

Positive values are taken in (11) and (12).
So (10) becomes:

L b=l (13)
dt
Where:
L:l(5+(1+elot—u)2+(1+ezﬁ—w)2) (14)
4 4e 0 e b

Consequently Z(t)<I.-+oe™, ¢ is a constant of

mntegration. As t~e we have D(t)<L.
EQUILIBRIUM POINTS AND STABILITY ANALYSIS

Equilibrium points: It 1s observed that the system (2)
has five nommegative equilibrium points. E, = (0,0,0) and
E, =(0,0,0) are obvious (i.e. they exist without conditions
on parameters):

u+e eo-u

E,=&§0=(—1——5 .
eo+e o +eo

and

o o W+ € ef-w
E, =(%,0,7)=(—=,0,—
ep+e’ ep+ep

)

exist and are positive if the followmng conditions hold:
e,u>u (15
e,pw (16)
The fifth positive equilibrium peint E,=(&¥7.2) will
not be shown as it contains many parameters and hence
will be very long.
Stability analysis: To study the local dynamical behavior

of equilibrium pomts, the variational matrices of each
equilibrium points are computed. From these matrices and

using the Routh-Hurwitz criteria the local asymptotically
stable are determined.
The variational matrix of E; 1s given by:

It 1s observed from D, that the mamfold is unstable
along x-direction but stable along y-direction and along
z-direction because the eigenvalue of x-direction is
positive, while the eigenvalues of y-direction and
z-direction is negative. Therefore, the first equilibrium
point E; 1s saddle point.

The variational matrix of E, 1s given by:

-1 -a B
D1 =0 -u+ea 0
0 0 -w+ef

The equilibrium point E, 15 locally asymptotically
stable, provided the following conditions hold:

u=e, (17
we,pb (18)

The variational matrix of E, 13 given by:

-x  -ax -px
D, =|ea¥ -ea¥y —oF

0 0 —w+epX-c,¥

From D, and by using the Routh-Hurwitz criteria it is
observed that the equilibrium point E, 15 locally
asymptotically stable, provided the following conditions
hold:

(19)

elo+u+e >ue
W+ ¥ »e,fx (20)

The equilibrium point F, is stable in x-y plane if the
condition (19) is satisfied. But the condition (15) must be
satisfied so the condition (19) 13 always satisfied, while
the stability of the E, in the z direction (i.e. orthogonal
direction to the x-y plane) depend on the condition (20).

The variational matrix of E, 1s:

X af -Bx
D,=| 0
e, PE —C,Z

—u+eaX-cZ 0

—e,pZ
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The equilibrium point B, is locally asymptotically
stable with the following condition:

e p+w +e, >we, (21
u+c¢Z>egoX (22)

The equilibrium pomt E, 1s stable in x-z plane if the
condition (21) 1is satisfied. On the other hand the
condition (16) must be satisfied so the condition (21) is
always satisfied, while the stability of the E, in the y
direction (i.e., orthogonal direction to the x-z plane)
depends on the condition (22).

For the equilibrium points:

E,=&¥.2)

the variational matrix is:

1-2x - oy — Pz -aX -Bx
D, = eay —u+eaX—2eay—cZ -y
e,57 —C,Z -w+efk—2efz-c, ¥

Y

===

Where:
hy =1-2% -0y —BZ hy, = -aX, h; = P, hy =eay,
hy =—u+eax—2eay —¢z,hy; =—c¢,¥,hy; =e,fz,hyy; =—c 2,

hy,=-w+epX—-2e,pZ-c, ¥

The characteristic equation of the variational matrix
D, is:

A +HA +HA+H, =0
With:
H, =—thy, + hyy + hy, +hy)
H, = (hyhgy +hyhy + hyhg +hphaey — hyhy — hyshy, —hyshg )
H3 = (h13h31h22 + hlzhmhzz - huhzzhzz - h12h23h31)
From Routh-Hurwitz criterion:
E,=(X7.2

is locally asymptotically stable if the following conditions
hold:

H,>0 (23)

H,>0 24
,H,=H, (25)
We thus proved the following theorem.
Theorem (2):

¢ The equilibrium point B, = (0,0,0) is a saddle point
with locally stable manifold in the y-z plane and with
locally unstable mamfold in the x direction

»  The positive equilibrium pomnt E, = (0,0,0) 1s locally
asymptotically stable in the x-direction but it is
locally asymptotically stable in x-z plane if it holds
the conditions (17) and (18). The equilibrium point E,
15 a saddle point if the conditions (17) and/or (18) are
not satisfied

¢ The equilibrium points:

o on ute eu-u
E,=(%3.0)=(——9 6%
eo+e eo +ea

and:

PR w+e ef—-w
E, =(%,0,Z)=(——,0,—2
efi+e’ et +ef

)

* Are positive under the conditions (15) and (16)
respectively. The equilibrium point E, is locally
asymptotically stable provided the conditions (19)
and (20) hold, while the equilibrium point E, is locally
asymptotically stable provided the conditions (21)
and (22) hold

»  The non-trivial positive equilibrium point

E4 = (EJT':@

»  Exists; it is locally asymptotically stable provided the
conditions (23) (24) and (25) hold

Corollary: The equilibrium points E, and E, are unstable
in z-direction (i.e. orthogonal direction to the x-y plane)
and in y-direction (i.e. orthogonal direction to the x-z
plane), respectively, if the condition (20) of E, and the
condition (22) of B, are not satisfied (violated).

Theorem (3):

»  The equilibrium pomt E; 15 globally asymptotically
stable inside the positive quadrant of x-y plane

¢ The equilibrium point E; is globally asymptotically
stable inside the positive quadrant of x-z plane
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Proof: We prove (i) and in the same manner (ii) can be
proved.
Let

1
Glx,y)= Xi)i

15 a Dulac function, it 13 continuously differentiable
in the positive quadrant of x-y plane, A = {(x.,y)|
x>0,y=>0}.

Let:

N (xy) = x(1-x)-txy, N2(x,y) = -uy+e,cxy-e,0y’

Thus:
A(GNI,GNZ):@Jra(%?:%_%

It 18 observed that A(GN,, GN,) is not identically zero
and does not change sign in the positive quadrant of x-y
plane A. So by Bendixson-Dulac criterion (Logan and
Wolesensky, 2009), there 13 no periodic solution inside
the positive quadrant of x-y plane. E, 1s globally
asymptotically stable mside the positive quadrant of x-y
plane.

Persistence and extinction: Freedman and Waltman
(1984) were studied system of equations of Kolgomorov
type and derived abstract theorems that
persistency once certain conditions were applied. They

showed

used a strong defimtion of persistency wiich 13 A
population x(t) is persistent if x(0) > O and lim inft_x(t)=>0.
The system is said to persist if each component of the
system persists. The system (2) has no periodic solution
in the respective planes as was shown in Theorem 3.
Also, the boundedness of system (2) was proved n
Theorem 1. According to Corollary 1, the orthogonal
directions of E, and E, are unstable if the conditions (20)
and (22) are not satisfied

We next show that the conditions of Freedman and
Waltman (1984) are satisfied. Weusey, =yvandy,=zto
simplify the notations.

(C1) x 18 a prey population and y, z are competing
predators, living exclusively on the prey, 1.e:

A By BOyy)<0 & 41,7512

oy, Ox oy,

(C2) In the absence of predators, the prey species x
grows to carrying capacity, i.e.:

o
J(0,0,03=0, (5. =150

IK>051(k,0,0) = 0.

Herek=1.
(C3) There are no equilibrium points on the y or z
coordinate axes and no equilibrium point in y-z plane.
(C4) The predator y and the predator z can survive on
the prey, This means that there exist points:

E:(.3.0)
and:
E:(%,0,9)
such that:
I,3,00=F(x,3,00=0
and:

1(%,0,%)=F,(%,0, =0
and %,¥.%,7Z>0 X<k |

Freedman and Waltman (1984) then showed that if
the above conditions hold, if there is no limit cycle and if:

F(%0.2 >0 E&§.00>0 (26)

then system (2) persists.
Inequalities (26) implies that:

‘l>u+flz (27)
[

[3>w+525} (28)
e, xX

Gakkhar et al. (2007) has mentioned the conditions
that represents the necessary conditions to mclude the
following:

E(£,0,2)20 E(%.9,0)20a (29)

In the case of satisfying the conditions (27) and (28),
then system (2) persists. However, in the case condition
(27) was satisfied but condition (18) was not satisfied,
then the first predator y survive, while the second
predator z becomes extinct and vice versa.
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Numerical simulations: Different values of the
parameters ¢ and p in studying the dynamical behavior of
the system numerically were considered. The parameters
« and B are important parameters because they are
contained in the functional and numerical responses
which formed the main component of prey predator
models (Rockwood, 2006). In addition, they are part of the
mtraspecific competition coefficients m our model. The
functional response plays an important role in interactions
between prey and predator (Poggiale, 1998). « and
measure the efficiency of search and capture of the
predators. Two different cases were considered which
showed the coexistence and extinction of the predators.
The other parameters were fixed in both cases. However,
the numerical simulations focused on showmg the
coexistence or extinction of one of the predators. The
values of parameters were chosen to satisfy the stability
conditions of equilibrium points E, and E, in x-y, x-z
planes, respectively which imply non periodic solution
(Theorem 3). The other parameters were fixed as follows:

e, =0.85,u=0.58, ¢, = 0.08, c,= 0.05, e, = 0.88, w = 0.67,
x(0) = 0.5, y(0) = (0.2), z0) = 0.2

Two different sets of numerical experiments were
carried out. Tn the first case, the value of [ was fixed at
1.33 and the value of ¢ varies. It is observed m Fig. 1 that

109 ——— Preyx
———-— Predator y
0.8 Predator 2
. 0.6'[
&
[}
S .4
0.2'\"

0 2 40 60 8 100 120 140
Time

Fig. 1: Time series of dynamical behavior of the system
(2) at e = 1.37. Figure 1 described the coexistence
of three species (two predators one prey system)
when ¢ which is the value of efficiency of search
and capture of predator y was near of P that is
efficiency of search and capture of predator z,
where the value of ¢ was 1.37. The dot dashed line
represents prey X, the dashed line indicates
predator y, while the connected thick line represent
predator z, thus system of lines 1s applied in all
figures

107 Prey x
=———~ Predator y
0.8 /-— Predator z
i
E 0.6+
o
A 0.4-

0 2IU 4'0 6;) 8I0 l(I)O 12'0 1‘;-0
Time

Fig. 2: Time series of dynamical behavior of the system
(2)ate = 0.9. Fig. 2 showed extinction of predator
v and surviving predator z when the value of
efficiency of search and capture of predator y (o)
was decreased. Predator z is represented by the
connected thick line, predator y is indicated by the
dashed line, while prey x 1s sigmfied by the dot

dashed line
1.0 =———= Preyx
————— Predator y
= Predator z
0.8

N 0.6

2 04

0 20 40 60 8 100 120 140
Time

Fig. 3: Tume series of dynamical behavior of the system
(2)at e = 1.9. Figure 3, extinction of predator z and
surviving predator y was shown when mncreasing
the value of efficiency of search and capture of
predator ¥ () to become 1.9. The dashed line
indicates predator y, predator z 1s represented by
the connected thick line, while the dot dashed line

represents prey x

when the values of « and P were near to each other, the
three species stably coexist. However, if the value of «
was decreased (¢ = 0.9), predator y became extinct, while
predator z survived, as is shown in Fig. 2. On the other
hand, if & was mcreased (¢ = 1.9), the predator z tended to
extinction (Fig. 3) and predator y survived. This showed
that the survival of each predator depended on the
efficiency of the search and capture.

In the second case, the same values of parameters
were used but the value of @ was fixed at 1.1 and giving
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L0 e Prey x
————— Predator y
0.3- Predator z
pe
E-. 0.6 1
& 0.4 4
0.2+

0 20 40 60 8 100 120 140
Time

Fig. 4: Time series of dynamical behavior of the system
(2) at p = 1.3. In Fig. 4, the coexistence of three
species (two predators one prey system) 1s shown
when P that represents the value of efficiency of
search and capture of predator z is near of value
which is efficiency of search and capture of
predator y, the value of B 1s 1.3. The dashed line
represents predator y, the comnected thick line
represent predator z, while the dot dashed line
represents prey X

109 ———=Preyx
————— Predator y
= Predator z
0.84
!
o 0.6
g
S 04
0.2
"
1) T T
0 20

T T T T
40 60 80 100 120 140
Time

Fig. 5: Tume series of dynamical behavior of the system
(2) at p = 0.9. Figure 5 illustrates extinction of
predator z and swrviving predator y when
decreasing the value of efficiency of search and
capture of predator z (B) to become 0.9. The
dashed line indicates of predator y, predator z is
represented by the connected thick line, while the
dot dashed line represents prey x

different values to p. Corresponding results for [ are
shown in Fig. 4, Fig. 5 and Fig. 6. when the values of ¢
and P were almost near to each other where three species
may coexist at these values as 1t 15 shown in Fig. 4. Butin
case the value of B(p = 0.9) was decreased, predator z
became extinct, while predator v swvived, as is clear in
Fig. 5. Otherwise if p was increased (p = 1.8), the predator
v tends to extinction and predator z survives, this is

L0 Preyx
=—-== Predator y

— Predator z
0.8

0 20 40 60 8 100 120 140
Time

Fig. 6: Time series of dynamical behavior of the system
(3)yat B =1.8. Figure 6 shows surviving predator z
and extinction of predator y when mcreasing the
value of P to become 1.8. The connected thick line
represents predator z, the dashed line indicates of
predator v, while the dot dashed line represents

prey x

explained in Fig. 6. Tt was observed that the numerical
simulations correspond with theoretical analysis when the
conditions in section 5 were applied.

Predators and prey can influence one another's
evolution. Traits that enhance a predator’s ability to find
and capture a prey will be selected in the predator. Traits
that enhance a prey's ability to avoid bemng captured and
eaten by a predator will be selected in the prey. The
“goals” of these traits are not compatible and it s the
interaction of these selective pressures that influences
the dynamics of the predator and prey populations
(El-Messoussi et al., 2007, et al, 2004
Islam et al, 2004). Predicting the outcome of species
interactions 1s also of interest to biologists trymng to
understand how communities are structured and
sustained. One aspect that may affect the efficiency of
searching and capture by predators is the existing
envirommental effects interfere with their foraging
activities (Myers et al., 2007, Smee, 2010). Recent research
has shown that the movement properties of foraging
ammals may have important implications for their success
1n locating prey (Scharf et al., 2006).

Younas

CONCLUSIONS

In this study a continuous time mathematical model
of interactions of two competing predators sharing one
prey was introduced. Holling type-T functional responses
have been used The conditions of existence of
equilibrium points and their stability of equilibrium points
of the model were obtamed. Theoretical analysis on
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persistence of the system and the extinction of one of the
predators was presented.

Numerical simulations showed that if the efficiency of
searching and capture of both predators was roughly the
same, the three species can co-exist. However, if the
efficiency of one of the predator was less than the other,
this leaded to the extinction of the later predator.
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