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Abstract: Evaluating the performance of Decision-Making Urnits (DMUs) 1s a very unportant subject in Data
Envelopment Analysis (DEA) and DEA does this by assigning a relative efficiency score to each DMUL Tn spite
of the great importance of this subject, the majority of the methods presented in the different studies have not
attempted to evaluate the performance of the nefficient DMUs beyond the relative efficiency scores attained
from the standard DEA moedels. In this study, the mimimum distance of each inefficient DMU from the efficient
frontier is obtained by a branch-and-bound algorithm and then these distances are used as a criterion for
evaluating the performance of the inefficient DMUs. It 15 known that using this method for evaluation 1s more
realistic compared to other methods and also this method is able to remove the existing difficulties in some
models, say, the CCR and BCC models. Also, this study proposes the use of the minimum distance of an
inefficient DMU from the efficient frontier in order to obtain the shortest projection from the evaluated DMTUJ
to the efficient frontier, thus allowing an mefficient DMU to find the easiest way to improve its efficiency.
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INTRODUCTION

Data Envelopment Analysis (DEA) was mutially
proposed by Charnes et al. (1978) (the CCR model) and
was 1mproved by other scholars, especially Banker et al.
(1984) (the BCC model) to evaluate the performance of a
homogeneous group of operating decision-making units
(DMUs), such as schools, hospitals, or sales outlets,
which use a set of resources, referred to as mputs and
transform them into a set of outcomes, referred to as
outputs. For evaluating the performance of DMUs, DEA
successfully divides them into two categories: efficient
DMUs and mefficient DMUs. DEA does this by assigmng
a relative efficiency score to each DMU such that the
DMUs in the efficient category have identical relative
efficiencies equal to one and the rest have the relative
efficiency between zero and one (Cooper et al., 2000).
DEA does not provide more information about the
efficient DMUSs; nevertheless, it 1s not appropriate to
claim that they have identical performance in actual
practice. However, there are many methods to rank the
efficient DMUs (Adler et al., 2002, Andersen and
Petersen, 1993; L1 ef al., 2007, Jahanshahleco et af., 2008,
Liu and Peng, 2008). As regards for the inefficient
DMUs, the majority of the methods presented in the
different studies have not attempted to evaluate the
performance of the mefficient DMUs beyond the relative

efficiency scores attamed from the standard DEA
models. Nevertheless, there are some methods for
ranking the inefficient DMUs, (Bardhan et af., 1996;
Torgersen et al, 1996 Baek and Lee, 2009;
Jahanshahloo and Afzalinejad, 2006), wlhich suggest
methods different from the standard DEA models for
evaluating the performance of mefficient DMUs. One
concept, derived in Bardhan et al. (1996), attempts to rank
the inefficient DMUs using a Measure of Inefficiency
Dominance (MID) according to their average proportional
inefficiency in all inputs and outputs. Moreover,
Torgersen et al. (1996) ranked the inefficient DMUs by
counting the number of DMUs that need to be removed
from the analysis before they are considered efficient.
However, a complete ranking camnot be assured since
many DMUs may receive the same ranking score. In the
method suggested by Jahanshahloo and Afzalinejad
(2006), a full-inefficient frontier having been defined,
DMUs are ranked based on their distance from this
frontier. The method presented by Baek and Lee (2009)
proposes the use of the Least-Distance Measure m order
to evaluate the performances. By considering these
methods and all methods m the literature, the distance
between the inefficient DMUs and the efficient frontier of
the Production Possibility Set (PPS) 15 a very important
criterion for evaluating the performance of the inefficient
DMUs. On the other hand, since the efficient frontier of
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the PPS contains the efficient DMUs, the less the distance
of an mefficient DMU from the efficient frontier, the easier
1t 1s to remove its inefficiency by less vanations in its
mputs and outputs. Hence, the closer the DMU under
assessment to the efficient frontier, the better the
performance of this DMU. But the majority of the methods
do not obtain the distance of the inefficient DMUs from
the  efficient frontier exactly for evaluating the
performance of the DMUs. For example, the CCR and BCC
models approximate the distance of the inefficient DMUs
from the efficient frontier of the PPS in a marmer similar to
the methods used for evaluating the performance of the
inefficient DMUs. However, since these models do not
obtain the distance of an inefficient DMU from the
efficient frontier accurately, there exists some difficulties
for evaluating the performances mn practice.

There are several methods to determine the minimum
distance of an inefficient DM from the efficient frontier
(Cherchye and van Puyenbroeck, 2001; Cooper et al,
2000, Fre1 and Harker, 1999, Gonzalez and Alvarez, 2001,
Lozano and Villa, 2005; Silva Portela et af., 2003; Baek and
Lee, 2009), but some of them have some difficulties when
used in practice. The procedure by Gonzalez and Alvarez
(2001) cannot always guarantee to reach the efficient
projection that is actually the closest to the assessed
DML, Frei and Harker (1999) proposed an algorithm to
obtain all the efficient facets that do not always
completely describe the efficient frontier and the approach
in Cooper et al. (2000) might lead to a projection that is
not an efficient point. The approaches by Cherchye and
Van Puyenbroeck (2001) and Silva Portela et af. (2003) do
find the solution that 1s wanted. Nevertheless, they need
ina previous stage to identify all the efficient facets of the
PPS frontier mn order to determime the closest efficient
projection. The method presented by Lozano and Villa
(2005) finds the sequence of targets ended in the efficient
frontier and the efficient projection found in the final
stage is generally closer to the original unit than the one-
step projection is, but it 1s not necessarily the closest
efficient projection to the original unit. The recently
presented method by Baek and Lee (2009) proposes the
use of the Least-Distance Measure in order to obtain the
shortest projection from the evaluated DMU to the
efficient frontier, thus allowing an mefficient DMU to find
the easiest way to improve its efficiency. Tn this paper,
first, a method is developed using a branch-and-bound
algorithm that 1s able to determine the minimum distance
of the mefficient DMUs from the efficient frontier
(by norms || . ||, and || . ||.. and then, using these distances,
a score is assigned to each inefficient DMU for evaluating
the performance of inefficient DMUs such that the less

the score of an iefficient DMU, the better its
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performance. The proposed method has the following
advantages:

As 15 knowrn, obtaining the mimmum distance of an
inefficient DMU from the efficient frontier is a very
important subject in DEA. This method finds these
distances by an interesting branch-and-bound
algorithm and hence proposes the use of these
distances in order to obtain the shortest projection
from the evaluated DMU to the efficient frontier, thus
allowing an inefficient DM to find the easiest way
to improve 1its efficiency

Owing to obtaining the minimum distance of the
inefficient DMUs from the efficient frontier exactly
and using these distances for evaluation, the method
proposed m this paper 18 more realistic for evaluating
the performance of the inefficient DMUs compared to
other methods and also it 1s able to remove the
existing difficulties in some models, say, the CCR and
BCC models

DATA ENVELOPMENT ANALYSIS

Consider a set of n DMUs, Q = {DMU,, DMU,, ..,
DMU,}, where, each DMU, (jeI = {1,2, ..., n}) produces s
outputs y; (r= 1,2, ..., 8) using m inputs x; (1= 1,2, ..., m).
Define x, = (X, Xy,..., X)) B andy; = (7, ¥yoor ¥o) € BY
as the input and output vecters of DMU, respectively, all
components of vectors x; and y; for all DMUs being non-
negative and each DMU having at least one strictly
positive input and output, thatis: x>0, x; # 0 and y,>0,
v, * 0;je ] Also, X = [x,, %,...%,] and Y = [y, y;.....¥.] are
mxn and s xn matrices of inputs and outputs, respectively.
The production possibility set (PPS) T is represented as:

T={(xy) eR" x R :y canbe produced from x}

The definition of the PPS depends on the postulates
selected by the manager. Charnes et al. (1978) deduced
the following PPS, considering some postulates. This set
15 denoted by T, which signifies the prevalence of
constant returns to scale.

T ={(xy)eR <R, :Pc R, Xh<x,YAzy, 20}

Banker et al. (1984) introduced the following PPS by
considering some postulates, which is obtained by adding
the constraint1:3,=1 to T, where,1, is a vector in R* with
all components equal to one and "." shows the dot or
inner product of the two vectors. This set is denoted by
T,, which signifies the prevalence of variable returns to
scale. T ={(xy)eR" xR, e R:XA<x, YAZy L A=1120} .
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Definition 1: (x,, v,) €T is called an efficient unit in T if
there 1s no other (x, y) €T such that (x,-y)<(x,,-y,) and
strict mequality holds in at least one component.

By the above definition, (x,, y,)€T 1s an efficient unit
if 1t 1s not possible to improve any of its mputs or outputs
in T without worsening some other inputs or outputs. The
set of all efficient units 1s a subset of the PPS, which 1s
called the efficient frontier and is denoted by 3* (T). That
is:

F(O={EyeT XN TR -PEE-YUE-H = &}

If (x,y,)€T 1s not an efficient umit, then 1t 1s an
inefficient unit. This means that it is possible to improve
the mputs or outputs of thus DMU 1in the PPS without
worsening some other inputs or outputs.

Now, we mtroduce the mput- and output-oriented
CCR and BCC models for assessing the relative efficiency
of (x,y,) by the assumption of constant and variable
returns to scale and i order to compare these models with
our method for evaluating the performance of the
inefficient DMUs:

The input-oriented BCC model corresponding to
Xy, €T,

0,(x,y,) = min{8:(0x,,y,)eT.} (1

*+  The output-oriented BCC model corresponding to
Xy, €T,
P, (X,y.) = max{@[(x,, py.)eT,} (2)

Also, by replacing T, with T, n the constraints of
Models 1 and 2, the input- and output-oriented CCR
models corresponding to (x,, y,) € T, are obtained,
respectively, whose optimal values are represented by
8.(x,, v,) and ¢ (x,, v,), respectively. Using these models,
the performance of the mnefficient DMUs can be evaluated
according to the scores that are obtained at the end of the
analysis. For the mput-oriented CCR/BCC model
corresponding to (x,y,), the more 08 (x,, v./0.(x,, v.),
the better the performance of (x,, y,). But for the
output-oriented CCR/BCC model corresponding to (x,, v,),
the less @Jx,, ¥/, (X, ¥,), the better the performance
of (x,, y,).

DEA was introduced to provide a ranking for all
DMUs. For efficient DMUs, there are many methods to
do this (Adler et al, 2002; Andersen and Petersen, 1993,
Li et al., 2007, Jahanshahloo et al., 2008, Liu and Peng,
2008). For inefficient DMUs, the mimmum distance
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between DMU, and the boundary of the PPS is
approximated. Since the PPS frontier contains the efficient
DMUs, the less the mimmum distance, the more the
efficiency. For estimating the mmimum distance between
DML, and the boundary of the PPS, DEA models try to
decrease/increase the inputs/outputs of DMU, as much
as possible. This means that the mputs/outputs of DMU,
are decreased/increased until a DMU on the PPS frontier
is obtained and this DMTUT is called the efficient pattern of
DMU,. The distance between DMU, and its efficient
pattern is considered as an inefficiency score. To achieve
efficiency, it is suggested that DMU_ decrease/increase
its mputs/outputs until the efficient pattern 1s achieved.
Hence, the closer the efficient pattern to DMU,, the easier
1t 18 to remove the inefficiency of DMU, by less variations
1n its inputs and outputs. There are many models in DEA
to obtamn the efficient pattern for the DMU under
assessment, which can be divided into two classes.

Radial models: Inthese models (for example, the CCR
and BCC models), the inputs/outputs of the DMIUT
under
proportionally until we reach the PPS frontier
Non-radial models: Tn these models (for example, the
Additive model), the inputs/outputs of DMU, are
decreased/mcreased such that the weighted sum of
the variations 1s maximized, in which case the DMU
reaches the PPS frontier

assessment are decreased/increased

The following example shows the drawbacks of the
radial and non-radial models to determine the efficiency
score and efficient pattern.

Example 1 (Motivating example): Consider the mput-
oriented CCR model, one of the famous radial models, as
follows:

0.(x., y,) = min{8:(8x,, y,)eT.}

For the above model, (0.(x,,y.)x,.y,) is an efficient
pattern and its mefficiency score is:

1-6,0x,, ¥, =11 (25, ¥, ) = (8, (%0, ¥ %, ¥ ) UIZ

=max{w, | %, —0,(x,.y. )%, |

W, | %,0 —0,(X,, ¥, 0%, bW, X, — 0,5,y )% |}
where, w, =1/, ifx, # Oandw,=0if x,=0,1=1,2
There are two drawbacks for Model CCR:

m.

EXEE)

»  The pattern 1s not necessarily efficient unit and could

be weakly efficient umt
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Fig. 1: The production possibility set mn the illustrative

o
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example
* Even if the pattern is efficient unit, it might not
necessarily be the closest efficient unit to the DMU
under assessmernt

Figure 1 demonstrates the intersection of the PPS T,
for DMU, to DMUy, and the hyperplane y = 1. Consider
DMU, := DMU; as the DMU under assessment. For this
DMU, 6, (DMU) = 1. So, its inefficiency score 1s zero and
it is considered as its own efficient pattern, though it is
not an efficient unit. Now, let DMU, := DMU, be the
DMU under assessment. An efficient pattern for thus
DM is

84 36
b L
19719

1)

and its inefficiency score is 1-6 (DMUy) = 7/19. However,
it can be shown that the closest efficient units to this
DMU are f(7, 5/4, 1) and h(28/5, 8/5, 1) by the |||, distance
and ||| distance, respectively. Now, there are three
efficient patterns for DMUj, which are obtained by the
CCR model and the ||.||, and ||.||.. methods. It 1s evident that
DMU, can achieve efficiency more easily (by less
variations in its inputs) if 1t chooses the efficient patterns
obtained by the ||.[|, and |.||. methods. In fact, if DMU,
chooses the efficient pattern of the CCR model, then its
inputs should be decreased by (49/19, 21/19). In this case,
the sum of the variation and the maximum variation to
attain efficiency are 70/19 and 49/19, respectively. If the
efficient pattern by the |||, method is chosen, then the
mputs should be decreased by (0, 7/4) and the sum of the
variations and the maximum variations are 7/4 and 7/4,
respectively. If the efficient pattern by the ||.||.. method 1s
selected, then the inputs should be decreased by (7/5, 7/5)
and the sum of the variations and the maximum variation

453

are 14/5 and 7/5, respectively. Therefore, if the efficient
patterns obtamned by the ||||; and ||.||. methods are chosen,
then efficiency can be achieved by less variations in
its inputs and outputs. In this study, we are going to
provide a method which is capable of determining the
closest efficient patterns by the ||.||; and ||.||. methods for
the DMU under assessment. In what follows, 1t will be
shown that the above-mentioned difficulty of radial
models 1s also present in non-radial models and 1s even
worse.

Consider the Additive moedel, one of the well known
non-radial models, as follows:

W (X,¥,)=
max{ll.s +1s": Xh+s =x,,YA—
sT=y,A20s 20,820

In the Additive model, the efficient pattern for DMU,
is (x,87%, y48™), (“*" denotes optimality) and the
inefficiency score 1s:

Wc (Xu’yo): H (Xo’ya)_(xo _S_*’yu +S+*)H1

In all optimal solutions of the Additive model, the
efficient pattern is efficient and hence Additive Model can
be rewritten as follows:

w, (x,.y,) = max{] ((x,.¥,) = (x, =5 Ly, +s" ) -
(x, -8 ,y,+s )€ 0" (T.}%s =0,5" 20}

The above model reveals that the Additive model
chooses the farthest efficient umt (by the ||.||, distance)
among all efficient units dominating DMU_. Thus, not
only the efficient pattern of the Additive model is not the
closest efficient unit, it 1s indeed the farthest efficient unit
among those dominating DMU,. For example, consider
DMU; as the DMU under assessment in Fig. 1 agam. The
Additive model has proposed (3,3,1) as an efficient
pattern and its mefficiency score 1s 4. So, DMU, should
decrease its inputs by (4,0) to achieve efficiency. In this
case, the sum of the variations and the maximum variation
to attain efficiency is 4. Therefore, for this DMU the
Additive efficient pattern is worse than the efficient
patterns proposed by the CCR model and the ||.||, and ||.|..
methods. Table 1 and 2 show the efficient patterns and
the inefficiencies of all DMUs.

Note that we consider the PPS T, to continue our
discussion, but we can have a similar argument for T..
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Table 1: Inefficiency scores and efficient pattem by the CCR and additive models

DMU (1. X2, V) 1-B¢ (), %, V) CCR efficient pattern We (%, %, V) Additive efficient pattern
A (4.3,1) 17 a(24/7, 18/7,1) 1 d(3.3.1)

B (71.3,1) 719 b(84/19,36/19,1) 4 (3,3,1)

C (8,1,1) 0 (81,1, 0 (8,1,1)

D 4,2,1) 0 “.2.1) 0 4,2,1)

E (2,4.1) 0 (2,4,1) 0 (2,4,1)

F (10,1,1) 0 (10,1,1) 2 (8,1,1)

G (12,1,1) 0 (12,1,1) 4 (8,1,1)

H (10,3/2,1) 1/4 c(30/4,9/8.1) 4 e(6,3/2.1)

Table 2: Inefficiency scores and efficient pattern by the ||.||; and ||.]. methods

DMU (X, X2, ¥) d'j |l|; efficient Pattern d; || |lee efficient pattern
A @.3,1) 1 @.2,1) v 2(7/2,5/2,1)
B (7.3.1) 74 £7,5/4,1) 75 h(28/5,8/5.1)
C (811 0 &1 0 811

D 4,2,1) 0 4,2,1) 0 “4,2.1)

E (2,4.1) 0 (2,4.1) 0 24,1

F 10,1,1) 2 (8,1,1) 2 (8,1,1)

G 12,1,1) 4 (8,1,1) 4 (8,1,1)

H (10,3/2,1) 52 (8.1.1) 2 (8.1.1)

THE BRANCH-AND-BOUND ALGORITHM FOR
EVALUATING THE PERFORMANCE OF
INEFFICIENT DMUS AND OBTAINING THE
CLOSEST EFFICIENT TARGET

Consider a set of DMUs Q with the mnput and output
vectors as given in the previous section. In this section,
using the branch-and-bound algorithm, we obtain the
minimum distance between the inefficient DMUs and the
efficient frontier of T..

Assume that E 15 the indices' set of the
efficient DMUs in Q and IE = (XE and also consider
DMU, = (x,, ¥,) as the observed inefficient DMU under
assessment, that 1s: o€lE.

Considering an arbitrary norm, say ||.|, the minmum
distance of DMU, from 3% T,) can be obtained as:

d, =min{|| (x,¥) - (x .y, )| (x. ¥)E (3)
9" (T, )

For the sake of linearization of the problems that will
be solved by the branch-and-bound algorithm, we
consider ||.||.. and | .||, in Problem Eq. 3. Considering ||.||,, this
problem leads to the following problem:

dy =min{¥ 7 |x —x, [+ 3l v, — . | )
(x, )= BE(TV)}

Let(xy)= (x5, y,+s") while s~ €R* and s" €R’, then
Problem Eq. 4 1s transformed to the following problem:

dy =min{ 2[5 [+) L8/ | (5)
(x, =8y, +s )€ (T)}
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Note that 3%T,) is not usually a convex set and hence
Problem Eq. 5 is not a convex problem. Also, it is very
difficult to determine 3%T,) exactly, therefore, solving
Problem Eq. 5 1s not simple. But the followmng theorem
shows that Model Eq. 5 i1s equivalent to a solvable
problem.

Theorem 1: The optimal value of Problem Eq. 5 1s equal to
the optimal value of Problem Eq. 6. That 1s: d=z-

Z :mjnziJS,_ |+2::1\5: |

) (6.1

s.t.EJGEKJXJ =X, %
EJGE?LJyJ =y +s' (6.2)
ZJEE?LJ =1 (6.3)
YAV xu y ) =0 (6.4
viox-u Ly u,20; JeB (6.5)
A=(2;]€Ey=0 (6.6)
vel uzl, (6.7)

Proof: Since, 3%T,) is a nonempty and closed set and the
objective function of Problem Eq. 5 is nonegative and
continuous, this problem has a finite optimal value and its
optimal solution belongs to 3%(T,). Suppose that (s, s'*)
15 an optimal solution of Problem Eq. 5. This means that
(x,-87%, v/ € 9%T,). Hence, the optimal value of
Model Eq. 7 must be zero.
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maxl s +1's*
s.t.ZJeEijj
ZjeEkaJ —s'=y, +s"
Yy A=l
eE ]
h=(hje BY 20

s 20,320

_ _*
+5 =X, 8

9

Then, the Karush-Kuhn-Tucker Conditions in linear
programming imply that there is (1, v, T ,A) such that:

(8)
-0y, +4, >0
=(h;jeE) =0
>1 0zl

Relation Eq. 8 shows that (g v, g A s> s 15 a
feasible solution for Problem Eq. 6. Therefore,

- 1
7, SIS * 4 Y s * =d,

Conversely, suppose that v s s 15 an
optimal solution of Problem Eq. 6. Then the Karush-Kuhn-
Tucker Conditions in linear programming imply that
the optimal wvalue of Model Eq. 7 must be zero. Thus
(x5 %y, 45 %) €INT,). Then (s7*, s *) is a feasible
solution for Problem Eq. 5. Thus:

TR PAERIED W El o4

And this completes the proof.

The objective function of Problem Eq. 6 is
nonlinear owing to the presence of the absolute
function, but the following theorem shows that it can be
linearized.

Theorem 2: Assume that we perform the following
change of variables in Problem Eq. 6:

5 =§ —§;§ 20,8 20

s'=3"-§"5 208 =0

then Problem Eq. 6 is equivalent to the following problem:
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d) =min(l’ 5" +1) $)+ (L8 +18")

m

S.t.ZJGE X, =x, 8 +§
EJGE}\‘JYJ =y, 5" -8 (%
(6.3)~(6.7)
§ 20,8520
§20,8 20

Proof: To prove this theorem, it is sufficient to show that
in all optimal solutions of Problem Eq. 6, we have:

|§ -8 |=§ +§8:i=LZ..m

P I .t S
|87 -8 S8 +8;r=L2,..8

The above relation holds if g4 —p and gtgt = for
each 1 and r. By contradiction, assume that for an optinal
solution of Problem Eq. 6 there is an index 1 such that
i8> 0. If we replace o and 8" by & -min{s "8}
and & —min{§ 8, respectively and the other values of
variables remain unchanged, then a new feasible solution
15 obtained with a smaller objective value, which 1s a
contradiction to the optimality condition.

Now, we extend the above argument for ||.||.. Suppose
that in Problem Eq. 3, |||l. 13 chosen as the distance
function. Then, Problem Eq. 3 leads to the followmng
problem:

&

o

L%, y)E 9°(T, )}

=min{max, {| % =%, LY, ¥, [} (10)

It we let (x, y) = (x,s7,y,+s") while s7eR™ and s" € R°,
then Problem Eq. 10 yields the following problem:
(1)

d =minfmax, {5 L[5 [}: Gk, -5y, +s)€d%(T,)

The following theorem shows that Model Eq. 11 1s
equivalent to a nonlinear problem that is solvable. The
proof of this theorem is similar to that of Theorem 1 and
hence is omitted.

Theorem 3: The optimal value of Problem Eq. 11 1s equal
to the optimal value of Problem Eq. 12. Thatis: 4= = 7,

ZZ :mlnITEIXﬂ Si_ MS: ‘} (12)

SL6ED-(6.7)

Proof: The proof of this theorem is similar to that of
Theorem 1.
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Although, the objective function of Problem Eq. 12 is
nonlinear owing to the presence of absolute functions,
using the change of variable  — max. {|s|,|s* |}, Problem

1

Eq. 12 can be converted to Problem Eq. 13 with the linear
objective function:

d” =min t
s.L(6.1)—(6.7)
—-t<s £ti=12,...m

—t<sf <tir=12,..,8

(13)

Hence, for obtaining the minimum distance of DMU,
from &*(T,) by ||.||, and ||.]|., we must solve Problems Eq. 9
and 13, respectively. But notice that these models are
nonlinear programming problems because of the existence
of the constraint:

EjeE}LJ

Now, in the following we present a branch-and-
bound algorithm that solves Problem Eq. 9 by solving
some linear programming problems. Tt is clear that solving
Problem Eq. 13 is similar to Problem Eq. 9.

(14)

(v'x —uly, +u)=0

THE BRANCH-AND-BOUND ALGORITHM FOR
SOLVING PROBLEM EQ. 9

Problem 9 provides the theoretical foundation for our
new algorithm. To elaborate on the following algorithm, it
must be stated that the algorithm for solving Problem 9
considers a branch-and-bound tree corresponding to
Problem 9. This tree contains some nodes and edges and
one linear programming problem has been assigned to
each node and one variable has been assigned to each
edge. To solve Problem 9, this algorithm moves along the
edges and considers some nodes and solves the linear
programming problems corresponding to them.

Also, the algorithm uses the leftmost node searching
method for traveling to all the nodes of the tree. All nodes
of the tree have been coded by vector k and each path in
the branch-and-bound tree is determined by this vector
and its dimension is the current depth of the tree. The
components of vector k are 0 or 1, in which 0
demonstrates moving along the left edge and 1
demonstrates moving along the right edge. Further
moving along some paths 1s stopped if the conditions
presented in Steps 1,2,3,4 and 8 hold. By these conditions,
it is not necessary to travel to all nodes. In other words,
Problem 9 is solved by traveling to only some nodes and
solving their linear programming problems, which greatly
reduces the computational complexity.

Scalar w, demonstrates whether or not Node k has
been visited. That is to say, if w,, = 0, then the left and
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right edges of Node k have not been visited and if w, =1,
then the left edge of Node k has been visited but the right
edge has not. If w, = 2, then the left and right edges of
Node k have been visited. W, 13 the set of remaining
indices E that can be added to L or I and can develop
the depth of the tree. Also, in each node, sets of indices L

and [, are used for imposing conditions:

A =0je Ly

t t —(Yy 1 =
VX -y tu, =0jely

on Problem (9) without condition Eq. 14.
We consider the branch-and-bound algorithm for
solving Problem (9) as follows.

Step 0: Input
k=(0),L, =@.L, =@, W, =E,w, =0,F*= 4o
(notice that k is a vector) and then go to Step 1.

Step 1: Solve the following problem:

F, = min(L §;

S.t.EjeE;Lk]Xj =x,—§ +%
EjeE)“kiyJ =Y. +E -8
EjeE)“kJ =1
Vi X, ULy, U, 20

JjeENL,

t t — 0N
VX, Tuy T, =0

to+

+1 B )+ (L5 +18)

(15)
jel;

b2 0; je EALY

Ay =0, je L}

v, 21 ,u, 21

§, 20520

- ar
§, 205 20

If it 18 feasible, then go to Step 2, else go to Step 5.

Step 2: If F<F then go to Step 3, else go to Step 5.

Step 3: If EJEE;L’; (v;t.x] —u::.y] +ul:o) —0 ("' shows the
optimality) then set:

*

P
(U, v, 0y, A5y L8, L8y L5, )

and go to Step 8, else go to Step 4.
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Step 4: Tf W, = O, then go to Step 5, else go to Step 9.

Step 5: Remove the last component of vector k and save
the obtained vector in k. If w; =1 then go tostep 7. else
set k =k and go tostep 6.

Step 6: If k =(0) and w, = 2, then go to step 10, else go to
Step 5.

Step 7: First set k =k and then set w, = 2. Then, add one
component 1 to the right-hand side of the components of
vector k such that the dimension of this vector 1s
increased by 1. Save this obtained vector in k. Then
select i_e W, Also set: w_—q! =L, L =L Uiih,

W =W, \{i.}. At lastsetk ="k and then goto Step 1.

Step 8: If k = (0) then go to Step 10, else go to Step 5.

Inpurk=(0).u=¢,1:=¢/
wk=10,F =+

W.=E,

SetF* = FY, (o, v*, uf, A*
840 Y =, VY,
w6 67 6T BT

Add one component 0 to the right-
hand side of the compinents of
vactor iy incroased by 1 and save
this obtained voctor in k. Then
select i W, Also set:
w=0,Li=1"u {td
Ly =L, We= W\ {ig

F

Ty
L8 %8,

this vectoe is incresed by 1 and

seve this obtained vector in k

then select i; £ w,. Also set:
w=0,Li=Lc u {i
Le=Ly, Wi= W {i}

Fig. 2: The flowchart of the branch-and bound algorithm for solving problem 9
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Step 9: First set w, = 1 and then add one component 0 to
the right-hand side of the components of vector k, such
that the dimension of this vector is increased by 1 and
save this obtained vector in k. Then select i€ W, Also,

el we =0,Lf =L} Ufi- b Lo =L, W =W, \{i.}. At last set
k=k andthen go to Step 1.

Step 10: Print (" ' v 2 ,§7,§7,8",§7) and F*.
The flowchart of this algorithm is represented as
Fig. 2.

TWO NUMERICAL EXAMPLES

Here, we present two examples to explam the method
presented in this study. The first example indicates how
to obtain the mmnimum distance of the inefficient DMUs
from the efficient frontier by the branch-and-bound
algorithm. Also, this example demonstrates the weakness
of the mwput- and output-oriented BCC models in
comparison with ouwr method for evaluating the
performance of the inefficient DMUs. We present this
sinple example to demonstrate the weakness of two mput-
and output-oriented BCC models i comparison with our
method contemporaneously. Also, since the PPS can be
shown as a simple graphic in this example, it 1s possible to
check geometrically whether the mimmum distances
obtained by our method are correct or not. Also, this
example 1s related to the variable retums to scale. But the
second example 1s related to the constant returns to scale
and this example compares the results of evaluating the
performance of the mefficient DMUs obtained by the our
method and the two input- and output-oriented CCR
models.

Example 2: Consider set Q = {DMU,, DMU,, DMU,,
DMU,, DMU, DMU, DMU, DMU,, DMU, DMULE, with
one input and one output for each DMU as shown in
Table 3 as the set of the observed DMUs. Also, Table 3
demonstrates the efficiency status of DMUs and Fig. 3
demonstrates the PPS T, produced by these DMUs.
Considering Fig. 3, the points on the line segments
AR and pc compose the efficient frontier of T,. Now, we
explain how to obtain the mimmum distance by |||, of
DMUs from the efficient frontier by the branch-and-
bound algorithm. Obtaining the minimum distance of other
inefficient DMUs from 9%T,) is similar to this. Te obtain
the minimum distance of DMU, from 3%(T,), Steps 0 and 1
imply that first, we must solve the following problem:

®

E

oy =min(S +§)+F +87)

st 2h, T3k, +50h. =
10-8 +§

(16.1)

Table 3: Data and the efficiency status

DMU, (X, Vi) The efficiency status
A (2,2) Efficient
B (3.4) Efficient
C (5,6) Efficient
D (8.6) Inefficient
E (4.1) Inefficient
F 4.2) Inefficient
G 54 Tnefficient
H (6.4) Inefficient
I (10,3) Inefficient
J (82) Tnefficient
y
D
6 -
4- «H
T, :
24 -
J
0 T T T X
0 6 8 10
Fig. 3: The production possibility set T,
20, + Ak +6M, = (16.2)
3+5° -8
op thg + e =1 (16.3)
2v—2utu, 20 (16.4)
3v—4dutu, 20 (16.5)
Sy —6utu, =0 (16.6)
vzluzl (16.7)
A=0, Ag o) 2(0,0,0) (16.8)
§—:§— >0 (169)
5t &t >0 (16.10)

After solving Problem Eq. 16, which 15 coresponding
to the root node, the optimal value F(*u) = 7.25 and the
optimal solution:
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F*=75 Infeasible

Fig. 4: The tree corresponding to DMU,

gt gt o
(uw (n)= (n)f=;‘(n)A=)‘(n)B=;‘<n)c= oSS

=(11.33,0,0.75,0,0.25,7.25,0,0,0)

are obtained. Since, the optimal sclution of Problem (16)
does not satisfy condition (14), we move to Node 2 as
shown in Fig. 4 and by imposing constraint A, = 0 on
Problem (16), solve the following problem:

Fyp =minG +§)+E +84)
st (16.1)—(16.10) (a7
A, =0

#

By which the optimal value g,

=g and the optimal
solution:
(o> Vo U Mesvmsboses Roe - Fom Soms o o
=(1,1.33,0,0,1,0,7,0,1,0)
are obtamed. But since the optimal solution of
Problem Eq. 17 satisfies condition (14) and F,; <F" = e,
then we give the new value E, toF*, thatis, we set
= 8. Also, further moving along the left and night
edges of Node 2 is stopped. Thus, we return to Node 1
and from Node 1 move to Node 3. The problem
corresponding to Node 3 is the following problem which
must be solved:

Fop =min +§)+F +§")
$1(16.1— (16.10) (18)

2v-2u+u, =0

After solving Problem Eq. 18, the optimal value
F,

ny = 7-25 and the optimal solution:

* * * o =
(u(UI) (0,1)’u(U,l)J"}\'(UJ)A’)L(UJ)B }\'(UI)C 0.0 500 %00 S0 )_

(1,2,-2,10,0,8,0,0,1)

are obtained. Since, the optimal solution of Problem (18)
does not satisfy condition (14) and also since E, <F,
then further moving from this node is not stopped.

Therefore, we go to Node 4. By solving the problem

corresponding to Node 4, F, | =7.25 and
(u(D,l,D)’V(D,I,U)’u(D,l,D)I’A'(D,l,DjA’}\'(D,l,U)E A'(UIU)C (U Lo (010) (Ul 0> (D 10

(1,2,-2,0,0.75,0,0.25,7.25,0,0,0)

are obtained. Then, we move to Node 5 and solve the
following problem:

FE;,LD,D) =min(§ +§ )+ +§)
$£(16.1) — (16.10) (19)

2v-2u+u, =0

Problem Eq. 19 has the optimal value ¥ -9 and

(0,1,0,0y
the optimal solution:

(u(uwm (0100) (0100)1 )L(uwo).a\ }"(0100)3 }"(uwo)c (0,1,000°

A(u*lu,uy (0,100 * Agu*mm ) (1=2»72=1>0>0=8>0=0>1)

Since, Node 5 15 the final node, then further moving
from this node 1s impossible and sice g, | >F', we do
not vary the value F*, which is F* = 8. Now, we move to
Node 6, whose corresponding problem is Problem Eq. 20

and 1s mfeasible:
F, oy =mim(d +§)+(F +§)

m1an
s4(16.1) — (16.10) (20)

2v-2u+u, =0
Ap=10
Sv-6utu, =0
Next, we go to Node 7 and solve its corresponding

problem. But since the optimal solution and optimal value
of the problem corresponding to this node are similar to



J. Applied Sci., 11 (3): 450-461, 2011

Table 4: The results of evaluation by our method

Table 6: Data of the observed DMUs

The inefficient DML 4 Scorerank g~ Score rank DMU x X ¥ ¥ The efficient status
! ! 1 20 151 100 90 Efficient
D 3 2 3 5 2 19 131 150 50 Efficient
E 3 2 1.66 4 3 25 160 160 55 Tnefficient
F 2 1 1.33 2 4 27 168 180 72 Efficient
G 2 l l 1 5 2 158 94 66 Inefficient
H 3 2 1.5 3 6 ss 255 230 90 Inefficient
I 7.3 4 3 7 7 3 235 20 88 Tnefficient
d 6 3 3.3 6 8 31 206 152 80 Inefficient
Table 5: The results of evaluation by the BCC model ?0 28 igg gg 188 E:g:z::t
DMU; Ou(x,y) Score rank () Score rank 11 53 306 260 147 Inefficient
D 0.625 1 1 1 12 38 284 250 120 Inefficient
E 0.5 3 5 6
F 0.5 3 2.5 4
G 0.6 2 1.5 2 Table 7: The results of evaluation of the performances
H 0.5 3 1.5 2 Score Score B, Score b, Score
I 0.25 4 2 3 DMU; 4t rank g~ rank (X, ¥) rank (%, yp) rank
J 0.25 4 3 5 ! !
3 18324 1 7014 1 0883 5 1133 5
5 37.850 6 14093 7 0763 9 1311 9
those of Nodes 3 and 4, hence we move to the new Node p $3074 9 107 o 0.835 - L0 7
8. By solving the problem corresponding to this node, the e 23645 4 10063 4 0902 4 L1109 4
optimal value and the optimal solution of this problem are 8 39.046 7 15367 8 0796 8 1256 8
obtained as follows. 9 35736 5 14060 6 0.96 1 1042 1
10 39552 8 12290 5 0871 6 1148 6
11 20442 2 8017 2 0955 3 1047 3
g =75, 12 22955 3 9332 3 0958 2 1044 2

W e g m m s e e
. v,u A A § L ELETLET)

(1,2,-2,0.5,0.5,0,7.5,0,0,0)

In reality, since this solution satisfies condition (14)
and F, . <F and the problem related to the next node
(Node 9) is infeasible, therefore the minimum distance of
DMU, from the efficient frontier is 7.5. If we similarly
obtain the mimmum distances of the other inefficient
DMUs from the efficient frontier by ||.||, and ||| and also
obtain the optimal value of the input- and output-oriented
BCC models for the mefficient DMUs, then Table 4 and 5
are obtained.

As shown in Table 5, the mput-oriented BCC model
evaluates the performances of  DMU; and DMIU;
identically, while these DMUs have equal inputs and
DMU has greater output than DMU;. Therefore, DMU;
must have a better performance than DMU; But
considering Table 4, ow method evaluates their
performances correctly by both ||.||, and ||.||. and gives a
better rank to DMU; than DMU;. Also, the output-
oriented BCC model ranks DMU, and DMU,; 1dentically,
while these DMUs have equal outputs and the input of
DMU; is less than the input of DMU,. However, our
method evaluates their performance correctly and gives a
better rank to DMU,, than DMU,,.

Example 3: Consider the DMUs in Table 6 which records
behavior mtended to serve as a basis for evaluating the
performance of the inefficient hospitals m terms of two
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inputs, number of doctors and number of nurses and two
outputs 1identified as number of outpatients and inpatients
(each in units of 100 persons/month). Also, Table 6
demonstrates the efficiency status of these DMUs. The
results of evaluation using our method and the input- and
output-oriented CCR models are exhibited in Table 7.

CONCLUSION

In this study, a method has been presented for
evaluating the performance of the inefficient DMUs,
which is based upon the minimum distance of these
DMUs from the efficient frontier. This method is different
and more realistic compared to the other methods of
evaluation of the performances and it is able to remove
the existing difficulties in some standard DEA models,
say, the CCR and BCC models. We proposed a
methodology based on the branch-and-bound algorithm
that allows us to obtain the closest targets and the best
efficient patterns for the inefficient DMUs by ||.||. and ||.|;-
These norms are considered for the sake of the linear
property and computational advantages. However, other
norms and criteria could be regarded as well. The general
argument behind this idea is that the closest targets and
best efficient patterns suggest directions of improvement
for the inputs and outputs of the inefficient units that can
help them to achieve efficiency with the least effort.



J. Applied Sci., 11 (3): 450-461, 2011

REFERENCES

Adler, N., L. Friedman and Z.S. Sterr, 2002. Review of
ranking methods in the data envelopment analysis
context. Bur. . Operational Res., 140: 249-265.

Andersen, P. and N.C. Petersen, 1993. A procedure for
ranking efficient umits in data envelopment. Manage.
Sci., 39: 1261-1264.

Baek, C. and I.D. Lee, 2009. The relevance of DEA
benchmarking information and the least-distance
measure. Math. Comput. Modell., 49: 265-275.

Banker, RD., A Chames and W.W. Cooper, 1984.
Some models for estimating technical and scale
inefficiency in data envelopment analysis. Manage.
Sci., 30: 1078-1092.

Bardhar, I., W.F. Bowlin, W.W. Cooper and T. Sueyoshi,
1996. Models for efficiency dominance in data
envelopment analysis. Part T: Additive models
and MED measures. J. Operat. Res. Soc. Japan,
39:322-332.

Charnes, A., W.W. Cooper and E. Rhodes, 1978.
Measuring the efficiency of decision making units.
Bur. J. Operat. Res., 2: 429-444

Cherchye, L. and T. van Puyenbroeck, 2001. A comment
on multi-stage DEA methodology. Operat. Res. Lett.,
28: 93-98.

Cooper, WW., LM. Seiford and K. Tone, 2000. Data
Envelopment Analysis: A Comprehensive Text with
Models, Applications, References and DEA Solver
Software. Kluwer Academic Publishers, Boston.

461

Frei, F. X and P.T. Harler, 1999. Projections onto efficient
frontiers: Theoretical and computational extensions
to DEA. J. Productivity Anal., 11: 275-300.

Gonzalez, E. and A. Alvarez, 2001. From efficiency
measurement to efficiency improvement: The
choice of a relevant benchmark. Eur. T. Operat. Res.,
133: 512-520.

Jahanshahloo, G.R. and M. Afzalinejad, 2006. A ranking
method based on a full-inefficient frontier. Applied
Math. Modell., 30: 248-260.

Jahanshahloo, G.R., FH. Lotfi, F.R. Balf and H.Z. Rezai,
2008. Using monte carlo method for ranking interval
data. Applied Math. Comput., 201: 613-620.

Li, S., G.R. Tahanshahloo and M. Khedabakhshi, 2007. A
super-efficiency model for ranking efficient umnits
in data envelopment analysis. Eur. J. Operat. Res.,
184: 638-648.

Liu, F. and H.H. Peng, 2008. Ranking of units on the DEA
frontier with common weights. Comput. Operat. Res.,
35:1624-1637.

Lozano, S. and G. Villa, 2005. Determinining a sequence of
targets in DEA. J. Operat. Res. Soc., 56: 1439-1447.

Silva Portela, M.C.A., P.C. Borges and E. Thanassoulis,
2003. Finding closest targets in non-oriented DEA
models: The case of convex and non-convex
technologies. J. Productivity Anal., 19: 251-269.

Torgersen, AM., F.R Forsund and 3.A.C. Kittelsen, 1996.
Slack-adjusted efficiency measures and ranking of
efficient units. J. Productivity Anal., 7: 379-398.



	JAS.pdf
	Page 1


