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A Clustering Approach for Studying Ground Deformation Trends in
Campania Region through PS-InSAR™ Time Series Analysis
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Abstract: The recent development of remote sensing techniques brings new possibilities of precise ground
movement measurements. One of these possibilities is the PS-InSAR™ methed. It allows detecting small and
long period ground deformations on large areas. Tn particular, the PS-InSAR technique involves interferometric
phase comparison of several radar images of the same scene taken at different times along the same orbit by
satellite radar sensors. The ground deformations occurring in the Campania Region has been recently
mvestigated by applying this interferometric technique m a peculiar project developed by Italian Mimstry of
Environment. The outcome consists in a very large and complex database that cannot be easily analysed with
traditional tools. In order to improve the interpretability of this dataset and to support the study of the
geologists of this project, we apply a clustering data mining approach on a sample area and identify
homogeneous clusters of ground deformation velocity trends. We report m this paper the main results of this
analysis, showing how the chosen clustering method allows a coherent geological interpretation of this large

and scattered dataset.
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INTRODUCTION

In this paper, the PS3-InSAR™ data were used to
study with a statistical approach, small, long lasting
ground deformations which occurred in the Campania
Region (Southern Italy) during the years 1992-2000.

Campania region has a complex geological structure.
It 1s characterized by an mtense urbanization and by the
interplay of several geodynamic processes related to
the presence of active volcanoes (Vesuvius, Phlegraean
Fields and Isclia), seismogenic structures characterised
by high magmitude earthquake (e.g., 6.9 Mw m 1980),
widespread landslides and geological instability, sinkhole,
subsidence and long- to short-term tectonic warping,
which produce a complex ground deformation pattern.
These factors make the studied region particularly
threatened with geological risks.

The ground deformations occurring in the Campania
Region has been investigated (Vilardo et al., 2009) in the
context of the activity of PODIS Project (founded by
European Union QCS 2000-2006 PON-ATAS) of
MATTM (Environment Mimstry) and Campama Region.
In this project the landslide phenomenon was detected
using the PS-InSAR™ method. PS-InSAR  technique
(Ferretti ez al, 2000, 2001) is a dynamically developed
branch of satellite radar mterferometry. It exploits a set
of dozens satellite SAR images in order to detect
small ground deformations for large areas. PS-InSAR

technique derives information only about ground
movements for stable radar targets, so called Permanent
Scatterers (PS) points. They correspond with rock
outcrops or man-made features on the ground like
buildings, bridges, etc.

The Permanent Scatterers Synthetic Aperture Radar
Interferometry has been applied on ERS 1 and ERS 2
satellite radar images, whose availability for the study area
is dated between June 1992 and December 2000 during the
period of regular activity of the two satellites. ERS 1 has
operated regularly from 25/7/1991 to 10/3/2000, ERS 2 has
started regular acquisitions in May 1995 and it 15 still
operational, but has no more been used for technical
problems, in the PS-InSAR radar interferometry, from the
beginning of 2001.

In order to mmprove the mterpretability of this large
temporal database formed by PS deformation time series,
we apply a clustering data mining algorithm on a sample
area related to the central sector of the Campania region,
between the towns of Benevento and Avellino (Fig. 1).
This area has been chosen as study area because it
includes two large urban areas, it 1s characterised by a
complex landscape (wide valleys and mountain ranges)
and by lugh seismic and landshde risks. Our main aim 1s to
classify the time series of measured displacements for
identifying homogenous regions m which there s a
significant time dependent component to the deformation

field.
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Fig. 1: Study area location (coloured dots) in the
Campamia region (Ttaly). (City legend: BN,
Benevento, AV, Avellino)

Clustering is perhaps the most frequently used
algorithm in the framework of Knowledge Discovery in
Temporal Databases (KDTD) being useful in its own right
as an exploratory technique. Many temporal data mimng
applications make use of clustering according to similarity
and optimization of temporal set functions. However,
clustering algorithms of the traditional type are often
limited in dealing with large temporal data sets (Milone,
2008) and the proprieties (such as handling outliers, time
and space complexity, interpretability of results and so
on) of the different algorithms must be taken into
account for the choice among the different alternatives
(Scepi, 2009). A priori information on the structure of the
data can help us as well.

On our data set, we apply a partitiomng method the
CLARA algorithm. Partitioming algorithms are the most
commonly used algorithms in the context of data mining,
where hierarchical algorithms show an high computational
complexity. In this family of algorithms, we choose to
apply a k-medoids algorithm, CLARA, because for its
own proprieties it performs very well on our data set
respect to others (such as for example k-means) and we
discuss the differences. For the choice of the input
number of cluster, we look at several statistical
information based on the indices computed by CLARA
but, for a suggestion, we also consider the results
obtained implementing the k-means algorithm on our

data set. A priori information on the geological
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structure of the area help us on the choice of the number
of k also. We show how the clustering algorithm enriches
the geological interpretability of the results and allows a
coherent geological mterpretation of a very large and
scattered information, which cannot be easily analysed
otherwise.

MATERIALS AND METHODS

The processing technique of satellite radar images: The
PS-InSAR™  (Permanent Scatterers Interferometry
Synthetic Aperture Radar) was evolved by scientists from
the Politecruco di Milano (POLIMI) in 1999 (Ferretti et al.,
2001) and it is based on a multi-interferogram approach. In
particular, this techmque mvolves the interferometric
phase comparison of several radar images of the same
scene (a portion of the earth surface, wide 100x100 km)
taken at different times along the same orbit by the
satellite radar sensors. ERS 1 and ERS 2 satellites orbit at
an elevation of 780 km and take on the same image every
35 days. The critical deformation rate is 2.8 cm in 35 days,
or 0.8 mm in a day. Accuracy of PS-TnSAR technique
depends on the number of radar images used m
processing. In order to obtain good results about 20
images are required as a minimum. Not all the acquired
images are suitable for interferometric analysis, so that the
time interval between two consecutive images can be
longer.

The based on the
1dentification of the radar benchmarks, named Permanent
Scatterers, which are stable natural reflectors (rock

processing  technique  is

outcrops, buildings and urban structures), characterized
by stable individual radar-bright and radar-phase over
long temporal series of interferometric SAR images. This
techmique has proved useful at exploring slow movements
of the earth surface, induced by natural and man-induced
phenomena such as land subsidence, landslides, seismic
faults, volcanic uplifts and tectonic deformations, with
very high spatial resolution, both at a local and at a
regional scale (Colasanti et al., 2003; Farina et al., 2006).
The final results are:

A map of the PS identified in the image and their
coordinates: latitude, longitude and precise elevation
(accuracy on elevation better than 1 m); each PS is
labelled by a code

Average LOS deformation rate of every PS
(expressed as average velocity with an accuracy
usually between 0.1 and 1 mm year™', depending on
the number of available interferograms and on the
phase stability of each single PS)
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Fig. 2: Database output table

Displacement time series showing the relative (i.e.
with respect to a umque reference image) LOS
position of PS in correspondence of each SAR
acquisition. The time series represent, therefore, the
motion component of the PS in the direction of the
Lme of Sight (LOS) as a function of the time
{(accuracy on single measurements usually ranging
from 1 to 3 mm)

As n all differential mterferometry applications, the
results are not absolute both mn time and space, but the
deformation data are referred to the master image (in time)
and the results are computed with respect to a reference
point of known elevation and motion (in space)

The traditional radar interpherometry can be affected
by atmospheric noise, but the PS-TnSAR™ technique is
capable to highly reduce the effect of time decorrelation
and atmospheric phase (Ferretti et al., 2001).

The PS database of our analysis: Our studied scene
encompasses the area of Campania (Southern Ttaly)
between the towns of Benevento and Avellino. We have
selected the data referred to tlus area for a first sample
study. The sample is representative of the different and
more important geological existing in
Campania and it 1s formed by high seismic and landslide
risks zones. The availability of the data 1s from June 1992
to December 2000, period of regular activity of the two
satellites.

The PS ponts, registered in this area, constitute the
benchmarks of a geodetic network, already available on
the territory, corresponding, in general, to rock outcrops
and man-made objects characterized by various geometry
and material, such as building roofs and terraces, lamps,
statues, walls, belfries, manholes,
landscaping, etc.

structures

5eWage COovers,

612

Code | lat | lLon | Wel |Coherence| 19920424 | 19920529 | 19920807 | 19920911 | 19921 ~
' |Dooz2 44442193 11,355714|-0,90 033 33 43 0.1 65
' |DDo2s 44442273|  11,355214|-2,00 062 2.4 6.5 6.3 01]
_|oDoz2s 44442273 11,356184|-2,10 0g2 E 231 E 15
|oooz2a 44442018 11,356654|-0.70 076 1 -0.4 -05 23
' |ooozo 44442158 11,395714|0,50 043 5.2 -2.7 45 83
|oDozz 44441838 11,357554|1,70 085 7.1 7E 33 4
_|oDo3z 44441978 11,356694|-0.40 02 25 04| 0.7 43
 |DDo34 44442083 11,355934|-050 085 36 4.1 -05 56
WS 44442128 11,355704|-0,20 057 54 41] 7.1 155
_|oDozs 44442108 11,355834|-050 0g2 4 4.1 3 15
|Doo#t 44442058  11,355304|-1,20 02 43 6.3 0.1 8.1
|oDo42 44442093 11,3595634 (0,10 053 23 28 -3 23
|oooss 44442068 11,355634|-0,10 045 35 38 1.4 05
DDOS0 44442078 11,356284(1,00 )] 1.3 £.2 3.2 E7
: L 44447818 11.496/44 100 ks g1 1.2 -0 4
' |oDoss 44441953 11,355614/-0,20 082 23 1.3 -2 37 =
< »

Therefore, our database is formed by 18.452 PS
characterized by a coherence value higher than 0.80, with
a time series made by 72 observations (Fig. 2). The
average velocities in the direction of the Line of Sight
(LOS) vary between + 5,90 and -15,96 mm year'. Each PS
point 15 defined by the code, the coordinates (latitude =
North, longitude = East), the average velocity of ground
deformation expressed in mm/year (negative rates indicate
subsidence, positive rates indicate uplift along 1.OS), the
coherence value (reliability ndex of series) and the
time-series of 72 displacement data. The distance 1s
centred, for each pomt, with respect to the distance that
the same point has with the satellite in the image termed
as master.

The time series of the measured displacements
(Fig. 3) allows us to 1dentify regions m which there 1s a
significant time dependent component to the deformation
field and enables the analysis of the deformation
evolution of the PS over time. In order to identify clusters
of homogenous zones respect to the ground deformation
velocity trends, a clustering data mining approach has
been used.

Clustering algorithms: Clustering is the subject of active
research in several fields such as statistics, pattern
recognition and machine learning. Data mining adds to
clustering the complications of very large datasets with
very many attributes of different types. This imposes
unique computational requirements on relevant clustering
algorithms. A vanety of algorithms have recently emerged
that meet these requirements and have been successfully
applied to real-life data mining problems (Berkhin, 2006).

Traditionally, clustering techniques are divided into
hierarchical and partitiomng. Hierarchical clustering
15 further subdivided into agglomerative and divisive.
The basics of Mherarchical clustering mclude the
Lance-Williams formula, the idea of conceptual clustering,
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Fig. 3: PS’s time series plottings: (a) uplifting trend and (b) subsidence trend

(now) classic algorithms, such that SLINK and COBWEB
and also newer algorithms such as CURE and
CHAMELEON.

The luierarchical algorithms are widely used for their
flexability (handling of any forms of similarity or distance)
and applicability to any attribute types. One advantage of
the hierarchical algorithms is that the number of clusters
15 not required to be provided as a paerameter.
Furthermore, they have legible results in terms of
dendrograms. However, the quadratic computational
complexity restricts their application to small data sets.

While the hierarchical algorithms build clusters
gradually, the partitioning algorithms learn clusters

613

directly. In doing so, they either try to discover clusters
by iteratively relocating points between subsets, or try to
identify clusters as areas densely populated with data.
These algorithms are defined as Partitioning Relocation
Methods. They are further categorized mto probabilistic
clustering (EM  framework, algorithms SNOB,
AUTOCLASS, MCLUST), k-medoids methods (algorithms
PAM, CLARA, CLARANS and its extension) and k-means
methods. Such methods concentrate on how well the
points fit into their clusters and tend to build clusters of
proper convex shapes.

Different applications 1 data mining have
demonstrated that Partitioning Methods are very useful
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in restricting very large universes. This leads us to
consider these algorithms as the real data discovery tools
and to choose our clustering method within this family of

methods.

Partitioning algorithms: The optimization based
partitioning algorithms typically represent clusters by a
prototype. The objects are assigned to the cluster
represented by the most similar prototype. An iterative
control strategy 1s used to optimize the whole clustering
such that the average or squared distances of the objects
to its prototypes are mimmized. These clustering
algorithms are effective at determining a good clustering,
if the clusters are of convex shape, similar size and density
and if their number k can be reasonably estimated.
Depending on the kind of prototypes, one can distinguish
k-means, k-modes and k-medoids algorithms.

In k-means algorithm (MacQueen, 1967), the
prototype, called the center, is the mean value of all
objects belonging to a cluster. K-means clustering has
been one of the popular clustering algorithm because it is
one of the simplest unsupervised leaming algorithms. It
is considered an efficient algorithm for the time
complexity. However, the result strongly depends on the
initial guess of centroids and computed local optimum is
known to be a far cry from the global one. Furthermore it
requires several passes on the entire dataset, which can
make it very expensive for large datasets as the dataset in
our application and it is sensitive to the outliers and
noises, often found in data relating to classified wnages.
The k-medoids approach is more robust in this aspect.

The k-modes algorithm (Huang, 1997) extends the
k-means paradigm to categorical domains. For k-medoids
algorithms, the prototype, called the medoid, is the
most centrally located object of a cluster. A versions of
k-medoids methods 1s the algorithmm PAM (Partitioning
Around Medoids).

The PAM-algorithm (Kaufman and Rousseeuw, 1990)
is based on the search for k representative objects or
medoids among the objects of the dataset. These objects
should represent the structure of the data. After finding
a set of k medoids, k clusters are constructed by
assigning each object to the nearest medoid. The goal is
to find k representative objects which minimize the sum of
the dissimilarities of the objects to their closest
representative object.

Compared to k-means algorithm, PAM has the
following features:

* It operates on the dissimilarity matrix of the given
data set or when it is presented with an nxp data
matrix, the algorithm first computes a dissimilarity
matrix

» Tt is more robust, because it minimizes a sum of
dissimilarities instead of a sum of squared Euclidean
distances

» It provides a novel graphical display, the silhouette
plot, which allows the user to select the optimal
number of clusters

However, PAM lacks in scalability for very large
databases and it present high time and space complexity.

Several fast partitioning-based clustering algorithms
have been proposed in the literature, including Clustering
LARge Applications (CLARA). The CLARA algorithm
(Kaufman and Rousseeuw, 1990) is one of the popular
clustering algorithms used today in data mining
applications. This algorithm works on a randomly selected
subset of the original data and produces near accurate
results at a faster rate than other clustering algorithms.
Compared to PAM, CLARA can deal with much larger
data sets. Tt also tries to find k representative objects that
are centrally located in the cluster. Internally, this is
achieved by considering data subsets of fixed size, so that
the overall computation time and storage requirements
become linear in the total mumber of objects rather than
quadratic. In PAM the collection of all pair-wise distances
between objects is stored in the central memory, thereby
consuming O(n*) memory space. Therefore PAM cannot
be used for large values of n. To avoid this problem
CLARA does not compute the entire dissimilarity matrix
at a time.

Based on the above considerations, we choose this
algorithm for our application and we observe that it fit
very well to our dataset. We will shown in detail m the
next section the algorithm chosen.

We underline that, in the context of large data
applications, several other clustering algorithms have
been proposed by Chih-Ping e af. (2003) for an empirical
comparison among Fast Clustering Algorithms for Large
Data Sets) like Clustering Large Applications based upon
RANdomized Search (CLARANS), developed by Ng and
Han (1994) and genetic algorithm based clustering
methods (Estivill-Castro and Murray, 1997).

CLARA algorithm: CLARA is a combination of a
sampling approach and the PAM algorithm. Instead of
finding medoids, each of which is the most centrally
located object m a cluster, for the entire data set, CLARA
draws a sample from the data set and uses the PAM
algorithm to select an optimal set of medoids from the
sample. This is achieved by considering sub-datasets of
fixed size, so that the tine and storage requirements
become linear rather than quadratic. Each sub-dataset is
partitioned mnto k clusters using the same algorithm as
the PAM function. Once, k representative objects have
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been selected from the sub-dataset, each object of the
entire dataset 1s assigned to the nearest medoid. The sum
of the dissimilarities of the objects to their closest medoid
1s used as a measure of the quality of the clustering. The
sub-dataset, for which the sum 1s mimmal, 1s retained. A
further analysis is carried out on the final partition. Each
sub-dataset 1s forced to contamn the medoids obtained
from the best sub-dataset until then. Randomly drawn
objects are added to this set until the sample size has
been reached.

Since, CLARA adopts a sampling approach, the
quality of its clustering results depends greatly on the
size of the sample. When the sample size i1s small,
CLARA's efficiency comes at the cost of clustering
quality.

CLARA can efficiently deal with large datasets
(Chuh-Ping et af., 2003). The clustering quality of CLARA
15 quite good, similar to the CLARANS algorithm, when
the data size 1s more than 3000. In terms of execution time,
as the data size mcreases, CLARA increases its execution
time slightly and, eventually, outperforms other fast
partitioning-based clustering algorithms. The insensitivity
of CLARA to data size is attributed to its execution time
being greatly influenced by a sample size that is a
function of k and not of n (number of observations). As
a sampling approach, CLARA 1s less susceptible to
degree of cluster distinctness and level of data
randomness, both in clustening quality and execution time.

However, when the number of clusters increases, the
execution time of CLARA mcreases significantly and if
the cluster sizes are asymmetric, the quality degrades.

For the properties just outlined, dealing with a small
number of clusters, the CLARA algorithm performs very
well on our dataset. We will show its powerful in the
definition of coherent geological clusters.

We have used the following CLARA routine in
MatLab™ language:

Required input arguments:

« x: Data matrix (rows = observations, columns =
variables)

¢ keclus: No. of desired clusters

*  vtype: Variable type vector (length equals number of
variables)

Possible values are:

¢ Asymmetric binary variable (0/1)

¢ Nominal variable (includes symmetric binary)
*  Ordinal vanable

* Interval variable

1(4):610-620, 2011
Optional input arguments:

s metric: Metric to be used (default Euclidian (eucli) or
mixed (mixed))

Possible values are:

s 'eucli’ Euclidian (all interval variables)
*  'manha' Manhattan

s 'mixed Mixed (not all interval variables)
We define:

» nsamp: Number of samples to be drawn from the
dataset

»  sampsize: Number of observations in each sample
(should be higher than the number of clusters and
lower than the number of observations)

»  L/Oresult=clara(x kclus,vtype,'euclt,5,40+2*kclus)

The output of CLARA 15 a structure contaimng:

»  result.dysobs: dissimilarities for each observation
with the medoids

+  resultmetric: used metric

»  resultnumber: number of observations

+  resultidmed: Id of medoid observations

» resultncluv: A vector with length equal to the
number of observations, giving for each observation
the number of the cluster to which it belongs

»  result.oby: Objective function for the best subsample

¢+  resultclusinf Matrix, each row gives numerical
information for one cluster. These are the cardinality
of the cluster (number of observations), the maximal
and average dissimilarity between the observations
in the cluster and the cluster's medoid, the diameter
of the cluster (maximal dissimilarity between two
observations of the cluster) and the separation of the
cluster (minimal dissimilarity between an observation
of the cluster and an observation of another cluster)

¢ result.sylinf: Matrix based on the best subsample,
with for each observation 1 of this subsample the
cluster to which 1 belongs, as well as the neighbour
cluster of T (the cluster, not containing i, for which
the average dissimilarity between its observations
and 1 is minimal) and the silhouette width of' 1

This function is part of LIBRA: the Matlab Library for

Robust Analysis, available at: http://wis kuleuven. be/stat/
robust.html
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RESULTS AND DISCUSSION

For a first empirical discussion, we have applied
the l-means algorithm and the CLLARA algorithm on our
data set. As we don’t know a priori the number of
clusters, we have decided to evaluate the results
obtained with different (k = 4, k = 5 and k = 6) number of
clusters.

We have considered some main indicators: the
variance within and the variance between (for k-means),
the distance between each object and its medoid and the
separation of the clusters (for CLARA). Furthermore we
have computed the Calinski and Harabasz index for the
different classification obtained by the k-means algorithm
and the average silhouette statistic (Kaufman and
Rousseeuw (1990) for the different results obtained by
CLARA (Scarso, 2008).

The Calinski and Harabasz index is defined as:

o= trB, k-1
¥ oW, ink

where, tr(B,) 1s the trace of the cluster matrix between the
groups and tr{W,) 1s the trace of the cluster matrix within
the groups. The optimal number of cluster 1s the value of
k that maximizes ¢, . For the k-means clustering on our
dataset this value (computed by considering k varymng
from 2 to 6) is 4. The silhouette statistic for each
observation 1 1s defined as:

_ b;-a,
" max(a,.b)

where, a 1s the average dissimilarity between the
observation 1 and all the observations of the cluster to
which i belongs and by, is the minimum of all the average
dissimilarities between the observation 1 and all the
observations of each other cluster.

The CLARA algorithms furmshes the average
silhouette that 13 the average of all the s;. The optimal
number of cluster 1s the value of k that maximizes this
quantity. On our dataset this value 1s 4. Therefore, for
both the algorithms, these mdices suggest 4 as the
optimal number of clusters. The information resulting from
the reality of the ground confirms this hypothesis, even
if interesting information could be found in the
classification of PS m 5 and 6 groups. Therefore we decide
to consider 4 as the input number of classes.

For the reasons expressed above, we consider more
accurate the CLARA results and we show and describe
the groups (Table 1) obtained by the CLARA algorithm.

The clustering analysis of the time series related to
18.452 P8 allowed to recogmze four different types of
ground deformation trends (Fig. 4a-d and Table 2). In
analyzing the geological causes of ground deformation
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Table 1: Statistical characteristics of the 4 classes

Cluster N N (%) A B C

1 10823 59 35.01 23.83 1.78
2 1564 8 3547 26.24 1.80
3 2988 16 268.92 32.87 13.67
4 3077 17 108.61 27.68 5.52

N =No. of cluster; A = Maximum similarities from median, B = Diameter
of cluster, C = Separation of clusters

Table 2: Ground deformation characteristics of the 4 classes

Class Trend Average LOS velocity

Class 1 Stability or very light subsidence  -1.52 to +0.89 mm year™!
Class 2 Slower and variable subsidence +0.44 to -2.52 mm year™!
Class 3 Faster subsidence -0.93 to -15.96 mm year™!
Class 4 Uplift -0.47 to + 5.90 mm vear—!

through the PS data, other type of variables (economic,
demographical) have not been considered because they
are not linked to the studied phenomena.

In particular class 1 shows a trend characterized by
stability or by a very light subsidence, with average L.OS
velocity values from -1.52 to + 0.89 mm year . Two
classes describe a subsidence trend characterised by
different rates: slower and variable for class 2 (0.44 to
-2.52 mm year ') and faster for class 3 (-0.93 to
-15.96 mm year ). Class 4 shows an uplift trend, with
average LOS velocity values from -0.47 to

+ 590 mm year™".

Geological interpretation: The clustering analysis of the
time series allows a coherent geological interpretation of
a very large and scattered dataset, which cannot be easily
analyzed otherwise.

The clustered PS are spatially defined by coordinates,
so that the interpretation of their deformation trend can be
referred to a map showing the spatial distribution of the
different ground deformation trend. The cluster
individuation and the spatial mapping of the deformation
trends 1s a basic data in the geological interpretation of
the active ground deformation of the studied territory and
in the defimtion of the natural risk (landsliding,
subsidence, seismicity, morphotectonics). As a matter of
fact the recognized ground deformation trends are the
results of combined morphological, tectonic and anthropic
processes, acting on the territory at different scale and
intensity and the clustering method combined with the
interferometric technique allows the evaluation of their
rates and location with a very high precision.

The studied scene encompasses the central sector of
Campania between Benevento and Avellino towns. The
deformation trend of clustered PS can be mapped showing
the spatial distribution of the different ground
deformation trend in the study area.

In Fig. 5 the distribution of PS clusters is showed
with reference to the main tectonic elements. The PS of
classes 2 and 3 characterizes eastern sector (river Sabato
valley) of study area showing variable rates of subsidence
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Fig. 4. Clustering classes trend (x axis = number of observations; v axis deformation in mm). {a) Class 1, (b) Class 2,
{¢) Class 3 and (d) Class 4

Legend cluster

Class1
. Class2
« Class3
. Class4

— Faults

- Activefaults

Fig. 5: Distribution of PS classes in the study area
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along L.OS. Mainly class 1 PS characterizes the South-
Western sector (Monte Partenio) of the study area,
showing rates of uplifting along LOS.

Two maps of the Avellino city (Fig. 6) and Benevento
city (Fig. 7) are proposed in order to show the results of
the application in a study of ground deformation in wrban
areas.

The Avellino complex ground deformation trends are
proposed in Fig. 6. On the top map of Fig. 6, the spatial
distribution of the PS velocity is given and it shows a
scattered distribution of negative (yellow dots) and null

(green dots) values in almost all the area. A higgest
density of negative values is present only in the SE
sector, while only some PS with positive values 1s present
1in the NW sector. On the bottom map of Fig. 6, the spatial
distribution of PS ground deformation trends obtained by
clustering analysis is showed; in this map the different
ground deformation trends existing in the central sector
{(blue dots = uplift) and in the eastern and western sectors
(red and orange dots = subsidence) of the city are more
clearly recognized. The boundary between the three
sectors 18 transitional and could be related to the presence

Fig. 6: Maps referred to Avellino town area: average LOS velocity of PS on the top and cluster classes distribution on
the bottom; the red lines mark the sectors with different ground deformation trend (+: Uplifting; -: Subsidence)
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Benevento
Dataset ER3 Discendente PS_TS
Legenda welocits media [mmia)
* oAl <500 <0 - 130
Y R T )
EYPRET R T 1)

» BON2800

Bensvento
| Dutaset ERS Discendents PS_TS
Legenda classi serle storiche

classe 1 stabsles_dsbole subsidenza
classe 2 subsidenza_variabde
classe 3 subsidenca_costante
classe 4 absidenza

Fig. 7:

Maps referred to Benevento city area: average LOS velocity of PS on the top and cluster classes distribution on

the bottom; the red lines mark the sectors with different ground deformation trend (+: Uplifting; -: Subsidence)

of tectonic structures (1.e., faults) and to the anthropic
activity (water pumping).

The  Benevento city  differential  ground
deformation trends are explamned in Fig. 7. The top
map shows the spatial distribution of the PS velocity
15 given with a gradual change in velocity values from
positive (blue dots) to null (green dots) and negative
(yellow dots) values passing from NW (top left) to SE
(bottom right), with a central sector characterized by
transitional features. The bottom map presents the
spatial  distribution of PS ground deformation
trends obtamed by clustering analysis; the different
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ground deformation trends existing in the Northem
sector (blue dots = uplift) and in the Southern sector
(red and orange dots subsidence) of the city are
clearly recognized. The boundary between the two
sectors seems very sharp without transition feature
and could be related to the presence of a buried active

faults.

CONCLUSIONS

The cluster individuation and the spatial definition of
the deformation trends is a basic data in the geological
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interpretation of the active ground deformation of the
studied territory and in the definition of the relevant
natural risks.

The clustering analysis of the interferometric radar
satellite data allows the evaluation of the rates and
location of ground deformation processes with a very
high accuracy. In particular, the examples described in
Fig. 6 and 7 show the power of the clustering analysis in
extracting important data in the analysis of geoclogical
processes by PS-InSAR processing database.

The time series clustering allowed us to identify:

The regions in which there is a significant time
dependent component to the deformation field

The different geoclogical causes of a deformation
trend in a group of spatially coherent ground points

This study can be seen as a first, pilot study on the
phenomenon. Currently, we are working on the analysis
of the data set referred to the whole Campania region.
Furthermore, we are studying the problem of searching
the best algorithm for clustering this dataset. An
innovative approach in this framework, based on Self
Organizing Maps, has been proposed by Romano and
Scepi (2006) but it has tested only on a sample of the
18.452 PS time series. We are working on a better
specification of this algorithm.

ACKNOWLEDGMENTS

The PS database has been implemented under the
TELLUS project, which has been developed in the
framework of the PODIS project (Progetto Operativo
Difesa Suolo) of the Ministero dell’Ambiente e per la
Tutela del Territorio e del Mare (MATTM) of Italy and
Regione Campamia and has been funded by the European
Union QCS 2000-2006 PON-ATAS. The authors thanks a
lot Fabio Matano for his helpful comments in the
geological interpretation of data and two anonymous
referees for their helpful review.

REFERENCES

Berkhin, P., 2006. A Survey of Clustering Data Mining
Techniques. In: Grouping Multidimensional Data
Recent Advances in Clustering, Nicholas, K. and
Teboulle (Eds. ). Springer, New Mexico, pp: 25-71.

Chih-Ping, W., L.Yen-Hsien and H. Che-Ming, 2003.
Empirical comparison of fast partitioning-based
clustering algorithms for large data sets. Expert Syst.
Applications, 24: 351-363.

Colasanti, C., A. Ferretti, C. Prati and F. Rocca, 2003.
Monitoring landslides and tectonic motion with
the Permanent Scatterers technique. Eng. Geol,
68: 3-14.

620

Estivill-Castro, V. and A.T. Muray, 1997. Spatial
clustering for data mining with generic algorithms.
Queensland University of Technology, Faculty of
Information  Management, Technical Report
FIT-TR-97-10.

Farina, P., D. Colombo, A. Fumagalli, F. Marks and
S. Moretti, 2006. Permanent Scatterers for landslide
investigations: Outcomes from the ESA-SLAM
project. Eng. Geol., 88: 200-217.

Ferretti, A., C. Prati and F. Rocca, 2000. Nonlinear
subsidence rate estimation using Permanent
Scatterers in differential SAR Interferometry. TEEE
Trans. Geoscience Remote Sensing, 38: 2202-2212.

Ferretti, A., C. Prati and F. Rocca, 2001. Permanent
scatters in SAR interferometry. TEEE Trans.
(Geoscience Remote Sensing, 39: 8-20.

Huang, 7., 1997. Clustering large data sets with mixed
numeric and categorical values. Proceedings of the
1st  Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Feb. 23-24, Singapore,
pp: 21-34.

Kaufman, L. and P.J. Rousseeuw, 1990. Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley,
New York, [SBN: 9780471735786.

MacQueen, T., 1967. Some methods for classification and
analysis of multivariate observations. Proceedings of
the 5th Berkeley Symposium on Mathematical
Statistics and Probability, Tan. 17-20, Berkeley, CA.,
pp: 281-297.

Milone, G., 2008. Temporal data mining: Techiche e
algoritmi di c¢lustering. Ph.D. Thesis, Statistics,
Universita Federico T di Napoli.

Ng, R. and J. Han, 1994. Efficient and effective clustering
method for spatial data mining. Proceedings of
International Conference on Very Large Databases,
Sept. 12-15, Santiago, Chile, pp: 144-155.

Romano, E. and G. Scepi, 2006. Integrating time alignment
and self organizing maps for classifying curves.
Proceedings of the Knowledge Extraction and
Modeling, TASC-INTERFACE, TFCS, Workshop,
Sept. 4-6, Anacapri, pp: 1-5.

Scarso, N., 2008. Stima del numero di cluster. Ph.D.
Thesis, Statistics and Informatics, Universita di
Padova, Facolta di Scienze Statistiche.

Scepi, G., 2009. Clustering Algorithms for Large Temporal
Data Set. In: Data Analysis and Classification,
Francesco, P., CN. Lauro and J.G. Michael (Eds.).
Springer, Heidelberg, ISBN: 978-3-642-03738-2.

Vilardo, G., G. Ventura, C. Terranova, F. Matano and
S. Nardo, 2009. Ground deformation due to tectonic,
hydrothermal,  gravity, hydrogeological, and
anthropic processes in the Campania Region
(Southern Ttaly) from Permanent Scatterers Synthetic
Aperture Radar Interferometry. Remote Sensing
Environ., 113: 197-212.



	JAS.pdf
	Page 1




