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Abstract: Gene 1dentification 1s an open optimization problem in Bicinformatics. Exponential growth of
biological data needs efficient methods for protein translation. Several approaches have been proposed that
rely on indicator sequences, statistical and DSP techniques but yet an optimized procedure is required to add
an optimal solution. A novel approach for gene identification has been proposed in this paper by employing
discrete wavelet transforms for noise reduction m DNA sequences and a novel indicator sequence has been
introduced for better signal mapping. Wavelet transforms greatly reduced the background noise and visible
peaks of genic regions were found in power spectral estimation. The comparative analysis of proposed and
existing approaches showed significant results for novel approach over prevailing solutions for datasets
Yersinmia pestis (ACCESSION: NC 004088, 4000 bp) and gene F56F11.5 of C elegans (Accession number
AF099922) from location 7021. The same significance was observed with four other experiments with real

datasets taken from NCBI.
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INTRODUCTION

Genes on chromosomes are split into two regions L.e.,
mitrons and exons (Hamdam and Shukri, 2008 ). Exons are
called the coding regions that code for protein. Exon and
gene identification is an important task in DNA splicing
that lead to better protein translation for consideration to
monitor the cell growth, fimction and type of protein.

Deoxyribonucleic acid (DNA) is a core material in
living species responsible for growth and genetic transfer
of traits. It is normally found in nuclei of eukaryotic cells
(may be found in mitochondrial regions also) contains
genes that can be billion of bases long in length.
Nuclectide bases are spread over these genes in the form
of four mnportant chemical bases, ie., Adenme (A),
Guanine (G), Cytosine (C) and Thymine (T). The bases are
always in pairs over DNA ladder aided by a backbone of
sugar and phosphate molecules. The sequence and the
order in which these bases appear are of fundamental
unportance for the categorization of variations in acts of
species. Diversity in living creatures (mod of behavior) is
directly related to degree of differences in organization of
bases over chromosomes. The bases may vary from some
hundreds to millions and produce the molecules called
protein. Protein plays a very fundamental role in growth
of different cells and keeping the balance in functional

units of body. The replication of DNA for the production
of new cells is also an important aspect for revelation of
genetic disorders or mutations.

Protein 1s composed of small scale umits called amino
acids. There are 20 types of amino acids and the sequence
of these units determines the type and function of
individual protein molecule.

According to the concepts of Fourter transforms, a
signal can be expressed in the form of summation over
sine and cosine which only narrates the frequency
components of signal (frequency domain analysis)
without any depiction of time domaimn analysis. All
frequency components of a digital signal can be obtained
but when these components are present and at which time
frame (period of time), this information 1s lacking in Founer
analysis. The restriction 1s due to mability to cut the
signal into pieces and perform the analysis piecewise over
the chopped signal. This problem can be stated as
Heisenberg uncertainty principal which stated that it 1s
impossible to get the time mformation of frequency
components and also the occwrrence of these
components in the specified time duration. A more
improved solution can be achieved using wavelet
transforms.

The gene data is expressed in the form of nuclectides
A, T, G, C. indicator sequence methods help us in
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translation of this data into humeric format that later can
be used for spectral analysis of DNA signal. Binary
indicator sequence method uses binary values 1 and O for
the existence or non existence of a specific nucleotide n
strand.

In EITP method, one indicator sequence is proposed
as against four binary indicator sequences with numeric
values of nucleotides A =0.1260, T = 0. 1335, G= 0. 0806
and C =0.1340.

As a replacement of Binary indicator sequence,
Complex indicator sequence (Hota and Srivastava, 2008)
uses one sequence of wvalues namely X (A) =+1,
X(T)=+, X(G)=-1 and X (C) = 4. The discrete wavelet
transform involves the concepts of discritization of
continuous transform and discrete coefficients can be
calculated using the Eq. 1:

X.=X.= Ex[nlgj,k[n] (1

neh

where,a=2,b=k2 jeN ke Z.

The process of performing convolution with scaled
wavelet can be repeated so that a set of approximate and
detail coefficients can be obtained for each iteration. The

discrete transform after normalization can be defined in
Eq 2

_ l1—a
1+ a” —2ac0s(2nk / N)

(2)

k

where, k can be termed as a frequency index and alpha as
noise index.

Roy et al. (2009) described a generic algorithm for
frequency distribution of various spectral values in
concern with individual nucleotide bases. Shuo and
Yisheng (2009) presented an SVM method for prediction
accuracy and identification of coding regions.

Chen et al. (2005) proposed a gene prediction
system based on Hidden Markov Model (HMM) using
Perl and PHP. Guo and Zhu (2008) described a hybrid
method comprising Takagi-Sugeno fuzzy model for
solution of optimization problem for genic regions
identification.

Kakumanm et af. (2008) proposed a method by
employmg statistically optimal null filter for maximization
of SNR (signal to noise ratio) and aided with least square
optimization criteria. Akhtar et al. (2008a) have shown an
optimized solution using Discrete Fourier transforms by
monitoring the effect of window lengths for signal
processing based coding regions identification. Hota and
Srivastava (2008) presented a complex indicator sequence

methodology  that reduced the computational
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complexity to 75% than binary indicator sequence
method. Akhtar et al. (2008b) have described a DSP
method with a comparative analysis of results for
proposed and existing solutions. Grandhi and Kumar
(2008) have proposed 2-simplex mapping method by
assigning the nucleotides to the three corners and one
center of a triangle. Mena-Chalco ef al. (2008) employed
the Modified Gabor-Wavelet Transform for better
identification of exons in DNA signal. Gupta et al. (2007)
have proposed an approach based on time series analysis.
Yin and Yue (2007) have predicted the exonic regions
based on period 3 property of exons with implementation
of Discrete Fourier transforms and indicator sequence
method. Datta and Asif (2005) formulated a Fast Discrete
Fourier transform based methodology for genetic regions
search in DNA sequence of Eukaryote. Dosay-Akbulut
(2006) emphasized the classification of introns in two
groups based on RNA secondary structure and self
splicing ability in variant species using PCR.

Parent et al (2004) describe the importance of
coordination between transcription and RNA processing
that carboxy-terminal domain of RNA polymerase TT acts
as a common link in both It lighlights two mandatory
functions 1.e., transcription and later Roxy nucleic acid
processing. Coding regions identification helps in
smoocthing the steps involved in DNA to RNA conversion
and drug design.

INDICATOR SEQUENCE

Indicator sequence 1s used to transform a DNA
nucleotide signal (consisting of alphabets A (adenine), G
(guanine), Thymine (T) and Cytosine (C)) into some
numeric equivalent for revealing the period three
component of signal for exonic prediction. The equivalent
values of these characters play an important role in
discriminating the boundaries between genic and
intergenic regions. The indicator sequences proposed in
the literature are described below.

Binary indicator sequence: The gene data is expressed in
the form of nuclectides A, T, G, C. indicator sequence
methods help us in translation of this data into numeric
format that later can be used for spectral analysis of DNA
signal. Binary indicator sequence method prices 1 and 0
for the existence or non existence of a specific nuclectide
1n strand.

Forexample x[n]=[ T TA GG T C C T] tramslates to
[0 100000 0] sunilarly, other binary mdicator
sequences are formed and then DFT of individual
sequences is calculated. Sum of all binary indicator
sequences is 1,
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uA[n] +uG[n] +uCn]+uT[n] =1
forn=0, 1, 2,... N-1.

Let UA[k], UG[k], UC[k] and UT[k] be DFT's of the
biary sequences, then:

N-1
Ux [k] — Zux [n]e—]ZKkan
n=4

—————

and U, may be one of indicator sequences m Eq. 3. After
the calculation of DFT:

sk=>| U [ (4)

We need to calculate the absolute value of frequency
vector with exponent power 2. This transformation gives
us the power spectral density or power spectra of the
desired DNA signal described in Eq. 4. The power i the
form of magnitude can be plotted against the frequency
vector to identify the peaks of exonic regions.

Electron-lon interaction potential (E11P) with windowed
DFT: In this method, one indicator sequence 1s proposed
as against four binary indicator secuences which

computationally reduce the overhead by 75%:
Yo = WX, + WX+ WX+ WX,

where, numerical values are:

A=01260
T=01335
G = 0.0806
C=01340

And the transform becomes:

MN-1

Ko k] = > ot [meg
n=0

k=1 2..N

)

where, k is bound in sample space, 0 < k < N

Complex indicator sequence with windowed DFT: As a
replacement of binary indicator sequences, complex
indicator sequence uses one sequence of values

(Hota and Srivastava, 2008) namely:
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X (A) =+
X(T)=+
X(G)=-1
X(Cr=1

And the corresponding transform becomes Eq. 6:

N-1
Xc[k] _ ;Xn [H]BIJZWlmIN (6)
k=112 N

where, value of k remains between the sample space
bounds.

The method of Complex Indicator Sequence reduces
the computational overhead by 75% and provides more
accurate prediction of genic regions.

DIGITAL FILTER METHODS

Finite impulse response filter (FIR): The filters that carry
a finite response to impulse signals are called FIR filters.
The FIR filter of length k can be described as:

y[n]= Zakx[n—k] 7

where, Y 1s the transformed data and x 1s the input data.
The filter takes a summation over input vector multiplied
by a constant factor. The output vector has the same
length as input vector. K 1s called the order of thus filter:

Y(z)
AlZ)=—2

(z) X@)
where, A (2) 1s a transfer function for this filter. It 1s
obtained by dividing the output vector values by the
input vector. We can also term this as:

B
Al)=Yaz" =a, +az +. . +a, 2"
%0

Which shows a polynomial equation in z-transform
and defines the same FIR filter? These filters are widely
used because of their stability.

Infinite impulse response filter (IIR): Thus filter carries an
infinite response to signal:

H- M-

7231(31[1171{] + ;bkx[nf k]

k=1

(8)

y[n]
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where, y represents a vector of length n that contains the
transformed values for TIR filter. The filter used two kinds
of coefficients, feed forward and feed backward
represented by &, and by

_Y@ _Bl)_ ¢

l\f(bkz'k ©
H(z)= =R
() Xz A@ +Eakz—k

where, H 1s the transform function over z-transform when
output vector 18 divided by input vector. The main
difference between the two filters is stability, band width
and order of filter. TIR filter with its extension is widely
used in DSP techniques for DNA signal analysis.

DISCRETE WAVELET TRANSFORMS

Discrete Wavelet transforms provide the best time
scale localization of DNA signal. We have used DWT for
denoising our sighals.

A Wavelet transform can be presented as:

t—b

w(mk(f(t),wu(t»:ﬁﬁ f(t)w*{ﬂ a (10)

where, P(t) is mother wavelet and b is shift parameter, the
Discrete coefficients after choosing values of a (initial) =2
and b (mitial) = 1 can be written as:

G = [ (=R, ) ()
PROPOSED APPROACH
Our hybrid approach contains the following

components:

Employing indicator sequence
Noise reduction

Segmentation in frames

PSD estimation

Discrimination measure estimation
Nucleotide range estunation

Mapping: For mapping the nucleotides in gene sequence
to a DNA signal, we have introduced a novel indicator
sequence (called UTP, Unwersity Technology
PETRONAS indicator sequence) after a keen analysis of
nucleotides in codon clusters of coding regions in DNA
signals of huge datasets. The numeric equivalents of
nucleotides for this indicator sequence are stated as
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Adenine (A) =X (A)=0.260, Thymine (T) =X (T) = 0.375,
Guanine (G) = X (G) = 0.125 and Cytosine (C) =X ()
=0.370.

Noise reduction: We have used Daubechies Discrete
Wavelet transforms for denoising our DNA sighal of
Yersinia by setting the appropriate frequency component
thresholds 1n analysis of approximate and detail
coefficients. These coefficients corresponded to the low
and high scale frequency components of signal.

Figure 1 describes the down-sampling and up-
sampling of DNA signal of Yersima by Daubechies
transforms of order three. The signal is passed through
filters of low scale (high frequency) and high scale
(low frequency) for generation of vectors contaming
approximate and detail frequency components information
of signal. These vectors contain the half of the signal
information each. First level coefficients of high pass are
buffered while low pass coefficients are again down-
sampled by a factor of 2. Second level coefficients of lugh
pass are again buffered and low pass components are
down-sampled again for third level coefficient generation.
The third level frequency components of high pass signal
are buffered and signal 15 decomposed. The same process
is applied with the help of low and high pass filters in
up-sampling. The denoising of DNA signal for Yersinia
helps mn appropriate estimation of discrimination factor for
exons and suppression of 1/f noise.

Segmentation in frames: We have found Kaiser Window
of length 351 bp:

x(n)

High pass
v

2

’

Low pass

v

2

I Repeat l

(a)

Level | DWT
(b)
Low pass
—P
-Slynthesized signal
_’
High pass

Fig. 1. Daubechies wavelet transforms (a) down-sampling
{(b) up-sampling
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(nfcx)f'oc)z)%}lu(ﬁ) 0snsM-1

0 otherwise

wi(n)= {Iu [B(l 7(
with p = 3.5 (mimmizes the leakage factor and enhances
the mam lobe width) after careful and thorough analysis
of wvariant functions combinations with different
parametric values.

Magnitude and power measures of frames: Magnitude
and power of each frame 1s calculated and frequencies are
normalized for better PSD estimation:

|Frame| = Ax(f) = | XI(f)| (Magnitude of frame)

Also called absolute value
Ax(f) =3I +iXI?

Power of Frame = Absolute value of frame raised to the
power of facter 2 = [Frame[’ = Px (£) = [XI({)]
The frequency components are then normalized by:

1
fL

&

Px(£)=/XUE)

where, s is the sampling frequency and I. is the length of
original signal.

It 1s worth mentioning that the any increment in
normalization factor beyond f8*1. creates a need for
rescaling the frequency vector rather than any further
umprovement in spectral analysis.

Discrimination measure estimation: Discrimmation
measure is a ratio of lowest exonic peak height (in a set of
exons) to the heights peak value of intron (in a set of
introns) in estimation of power spectral density of frames.
The calculated discrimination measure for proposed and
existing approaches is shown in Table 1 under results and
discussions.

Nucleotide range estimation: The genic regions bounds
are estimated from power spectral density estimation
plots. The results for exomic boundaries for specie
Yersinia with 4000 bp have been summarized in Table 2.

RESULTS AND DISCUSSION

We have used dataset Yersinia pestis (ACCESSION:
NC 004088, 4000 bp, that contains four genes and exons
from location 5000 to 8999 bp) for comparative analysis of
coding regions identification. Significant improvement in
prediction was obtained in calculation of discrimination
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measure for PSD estimation in proposed and all existing
approaches. The prevailing methods mclude Binary
indicator sequence method (Anastassiou, 2001) EITP
method (Achuthsankar and Sivarama, 2006), Complex
indicator sequence method (Hota and Srivastava, 2008)
Digital filter methods (Vaidyanathan and Yoon, 2002;
2004) .

Figure 2a narrates the PSD for Binary mdicator
sequence method (Anastassiou, 2001). There is a
considerable difference of bounds 100 bp almost for
nucleotide ranges than NCBIL The third exon carries
promising difference of 200 bp for the first initiation with
a slight difference in terminating region. The EITP method
{Achuthsankar and Sivarama, 2006) in Fig. 2b shows the
same behavior for the first and second gene but there is
a variation in nucleotide range for third exon. Third exon
carries a major gap of almost 400 bp which 1s obviously
another revealing flip for this method.

Figure 2¢ describes Complex indicator sequence
method (Hota and Srivastava, 2008). The first gene carries
the major gap in nucleotide ranges than NCBI standard
range (almost 150 bp in initiation). There is a brealoup of
range for the second exon between 500-900 and then 900
to 2500 bp. 3rd gene is more close to the standard range
than Binary and EITP methods. The proposed approach in
Fig. 2d describes the more promising close range of
nucleotide to the standard range. We can see a clear
difference of closeness of bounds compared with the
prevailing methods.

Table 1 describes the exonic boundaries calculated
against different approaches. Complex method contamns a
disconnection in second exon and exon peaks are far from
the standard range. The proposed approach bestows the
closer range comparable with NCBI range.

Table 2 presents the comparative analysis of
proposed and existing approaches for discrimination
measure. We can see a larger value for this factor for
proposed approach. There is a gain of 100% than Filter 2
(Vaidyanathan and Yoon, 2002) 114% than Filter 1
(Vaidyanathan and Yoon, 2004) 20% than Complex
indicator sequence method, 159% than EITP method an
138% than Binary method. This significant improvement
i results depicts the outperformance of proposed
approach.

Table 1: Exon Boundaries in different approaches

Method E; E, E; E,

Binary method 200450 450-2370  2400-2950  3000-4000
EIIP method 200450 450-2250 2251-2950  3000-4000
Complex method 150-500 500-900  2500-2950 29504000

900-2500

Filter 1 (Antinoch) ~ 210-260 450-2300  2400-2900  3000-4000
Filter 2 (Multistage) 200450 400-2200  2300-4950  5200-6950
Proposed approach  250-470 500-2400  2550-2950  3000-4000
NCBI range 301-573 574-2442  2647-3066  3117-4000




J. Applied Sci., 11 (5): 806-814, 2011

Table 2: Comparative analysis of various methods

Method employed Exons and intron peaks in PSD analysis Discrimination measure
Binary indicator sequence method El1 =29, E2 =280, E3 =340, E4 =425, Intron = 23 1.26
EITP indicator sequence method El1 =0.8, E2 =0.84, E3 =1.22, E4 = 0.035, Intron = 0.03 1.16
Complex indicator sequence method E1 =250, E2 = 1250, E3 = 2000, E4 = 2400, Intron = 100 2.5
TIR antinoch filter (Filter 1) El =21, E2=270, E3 =335, E4 =420, Intron =15 1.4
Multistage (Filter 2) El1 =0.6,E2=10.75 E3=1.2, E4 = 0.030, Intron = 0.02 1.5
Proposed approach El1=20,E2=16,E3=30, E1=1.5, Intron=0.5 3
450 (@) 1.41 (b)
400 4 121
350
11
300 A
250 g 087
2 z
200 0.61
150 1
0.41
100
.
50 - 0.
0 : T T T T 1 T . 0 T T T . T / v .
0 500 1000 1500 2000 2500 3000 3500 400 0 500 1000 1500 2000 2500 3000 3500 400
Location of nucleotides Location of nucleotides
25007 (o) 3571 (@
301
20004
251
1500 204
~ 151
1000
10
500
5_
0 ¥ . . : Y . . . 0 1 T T T T Y T 1
0 500 1000 1500 2000 2500 3000 3500 400 0 500 1000 1500 2000 2500 3000 3500 400

Location of nucleotides

Location of nucleotides

Fig. 2: Power spectral density estimation methods (a) Binary; (b) EITP; (¢) Complex and (d) Proposed

Figure 3 shows the PSD of Complex method agamst
the proposed approach. X and Y axis represent the
and power spectral density
estimation respectively. We can monitor larger exon peaks
of proposed approach agamst the promising Complex
indicator method (Hota and Srivastava, 2008) with
discrimination measure of 2.5. The discontinuity seen in
Complex method for second exon was removed in
proposed method. The third exon contains a larger peak
in Complex indicator method while peaks for the fourth
exons are almost similar. First exon carries high peak
against a comparatively high peak of intron in Complex

25007
Proposed approach
— — — Complex indicator sequence method nuclectide  locations
2000 \ |‘-| T ,ﬁl
- Wi
I l-‘| L II
1500f A v \
[a) ? Ul Wl I|
g { .ll“f f'\ & i | .'| 4 l
¥ [ Ao
1000~ { i |r| lI ' J|| ! \
A If! L I| | | !
f i \VI‘I \ | ““[l )
500 rf i ,'J' ; -,l {1 U] "
L fo i \1
/ A If { I.*Ml Sl
!r‘.' .I|l -~ f I'\-!" \-_I‘[{/:f"\ ¢ ‘\’,II il \
| gV ; } i 1 I v/ , ; i
C() 500 1000 1500 2000 2500 3000 3500 4000 indicator method.

Locations of nucleotides

Fig. 3: PSD of complex versus proposed method
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Power spectral analysis over S cerevisiae dataset: The
power spectral analysis for gene F56F11.5 of C elegans
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Fig. 4: Power spectral density estimation methods (a) Binary;

(Accession number AF099922) from location 7021 is
depicted in Fig. 4.

All sections of Fig. 4 depict various methods
employed for spectral analysis of gene S. cerevisiae
chromosome TIT (AF099922). X-axis and Y-axis represent
the nucleotides and PSD respectively. We have calculated
the Discrimmation factor D for all methods. The
Discrimination factor 15 the ratio of lowest peak in set of
exonic peaks to the highest peak in set of intronic peals.
Greater the value of D, greater is the prediction accuracy
and clear differentiation can be made between introns and
exons. Numeric value of D 15 another picture of
minimization of 1/f noise and maximization of genic pealk
values.

Table 3 describes the comparative analysis of various
methods for power spectral analysis performed over
S.cerevisiae chromosome T1I. We can see that Complex
indicator sequence method (Hota and Srivastava, 2008)
generates D as 2.06 which was the highest discriminant
value over all existing techniques. The UTP mdicator
sequence with wavelet transforms generates D as 2.8
which provide 36% more prediction accuracy.

We obtained a gain of 130% prediction accuracy than
Filter 2, 166% than Filter 1, 65% than EIIP mdicator

812

1000 2000 3000 4000 5000 6000 7000 8000

(@

101

0
0 1000 2000 3000 4000 5000 6000 7000 8000

(b) EIIP; (c¢) Complex and (d) Proposed

sequence method and 133% than Binary indicator
sequence method (Anastassiou, 2001).

We calculated the nucleotide range for exons and
summarized as follows:

Table 4 summarizes the nucleotide range of five
exons. We can momitor clear differences as a comparative
analysis of various approaches. Binary and EITP methods
glimpse more or less wide range difference than standard
NCBI results. Complex method results are better than the
first two approaches. Filter 1 and 2 behave accordingly
while there is significant improvement in prediction of
exons range with proposed approach.

Results and discussion section reveals that period-3
property 1s more significant in proposed approach. We
have measured the discrimination measure in power
spectral using datasets
(results for two datasets have been included here) from

estimation SIX real
NCBI. Comparing the results mentioned in all tables, we
found high sharp gemic peaks and reduced background
1/f noise in proposed approach. These results have been
explained using appropriate figures for PSD's and tables
for diserimination measure estimation in both respects

{meximization of peaks and minimization of DNA sequence
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Table 3: Numerical evaluation of discrimination measure

Exons and Percentage
Method intron Discrimination improverment.
employved boundries measure in prediction
Binary indicator sequence ~ E1 =270 1.2 133
(STFT with kaiser 32=925
window of length 351) E3 =800
E4 =685
E5 =445
Intron = 220
EITP indicator sequence El=0.32 1.7 65
(STFT with kaiser E2=1
window of length 351) E3=0.92
E4=04
E5=.44
Intron =018
Cormplex indicator sequence E1 =775 2.06 36
(STFT with kaiser window  E2 =2260
of length 351) E3=1230
E4 =1830
E5=1030
Intron = 375
Filter 1(TTR antinoch filter) E1=23.7 1.05 166
E2=63
E3=532
E4 =478
E5=37.1
Intron=22.4
Filter 2 (Multistage filter) E1=34.80 1.22 130
E2=113
E3=88.20
E4=778
E5 =483
Intron = 28.25
Proposed approach El=7 2.8 More than 36
E2=21 improvement
E3=12 in prediction
E4=7 accuracy than
E5=9 the highest
Intron=2.5 discrimination
factor (2.06)
Table 4: Nuclectide range for exons
Methad E, Es E, E, Es
Binary 650-1200  2400-3100 38004400  5300-5800 7100-7700
method
ENP 700-1200  2200-2900 39004400  5200-5800 7200-7700
method
Complex  750-1100 2600-2900 3600-4400  5200-5700 7100-7600
method
Filter 1 650-1200  2450-3100 3800-4450  5300-5850 7100-7750
(Antinoch)
Filter 2 700-1250  2200-2950 39004450  5200-5850 7200-7700
(Multistage)
UTP 750-1050  2450-2900 39504380  5200-5600 7220-7680
method
NCBI 0928-1039  2528-2857 41144377  5465-5644 7255-7605
range

noise). The calculations for bounds and peaks have been
discussed m favor and contradiction of proposed
technique against existing solutions. The trade off
between DNA sequence noise and peak heights has been
minutely described in the form of discontinuity in graphs
and nucleotide range estimation.

CONCLUSION

A novel method for gene identification 1s proposed
1n this paper. The method reduces the background noise
in DNA signal by employing the discrete wavelet
transforms along with mapping nucleotide with a new
indicator sequence. The power spectral analysis and
discrimination measures calculated over Yersmia pestis
(ACCESSION: NC 004088, 4000 bp) and gene F56F11.5 of
C elegans (Accession number AF099922) from location
7021 showed significant improvement in coding regions
identification compared with existing techniques. The
computational overhead is also reduced to 75% than
traditional Binary indicator method. The significant
improvement m prediction may help in understanding cell
growth, function and protein transcription and drug
design. The same significance was observed with four
other real datasets.
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