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Abstract: The aim of this study 1s to analyze data produced by a parallel application using statistical
mvestigation methods like design of experiments to determine faults in the design or implementation of the
application. Using this technique we develop a model to verify the design of a parallel application by
determining the factors influencing its performance and describe the behavior of the application based on these
factors. Experimental studies were performed on a parallel rendering application based on a sort-last domain
decomposition technique. The following characteristics of the parallel application were analyzed: processing
time, communication time and size of the data exchanged between processes. The performed analysis revealed

the limitations of the application design i various runtime conditions offering strong clues on how certain

stages of the application should be redesigned.
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INTRODUCTION

According to Foster (1995), the design of a parallel
application involves four stages: data partitioning,
communication design, agglomeration and mapping. Even
if the verifications required by Foster are followed, the
entire solution chosen in a certain stage can prove to not
have been the most appropriate. This can have a major
impact on the performance of the parallel application.
Following this model a bad application design can result
in any of the 4 stages. This could not necessarily be due
to the supplementary verifications required, but due to
run-time cenditions, which also need to be taken mto
consideration when a prediction for the performance of
the parallel application is required.

During the design stage the size of the datasets used
i the actual application runs 13 not usually known.
Following the design stages and rules proposed by
Foster (1995) the data is separated in distinct blocks that
can be mdividually processed After establishing the
data-partitioning scheme, it i1s necessary to define the
communication patterns, which can be a challenging task.
If errors emerge in any of the partitioning or
commumnication design stages, these can be propagated in
the agglomeration and mapping stages.

This rationale emphasizes analytic modeling of
performance. Yet parallel programming is first and
foremost an experimental discipline. Cost effective
approaches to parallel program design can rarely be
accomplished based entirely on theory because of the
flexibility and ease of modification of software on one
hand and the complexity of parallel computer systems on
the other (Foster, 1995).

Due to a large number of design strategies and
possibly influential factors, there are numerous aspects
that need to be clarified by the experimental studies:

» The factors that mfluence a certain performance
metric

¢ Whether there is any interaction among factors

»  The quantification of the effect of each factor and of
the interactions between them

s Factor settings providing optimal performance

¢+ Limitations enforced by these settings on the
application

One approach would be to use heuristic methods, but
in this case the behavior of an application cannot be
quantified. Heuristics are stochastic in nature, meaning
that repeated runs of a heuristic produce different
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behaviors. Their approximate nature means that while they
should produce good solutions relatively quickly, they
will actually produce improved solutions over extended
run times (Ridge and Kudenko, 2007).

In this study, we propose a novel model for
designing parallel application based on performance
analyses, leading to objective conclusions valid over the
possible design faults. Our approach 13 to use a
systematic statistical design of experiments strategy to
facilitate the design task. Thus, after implementing an
application prototype, its evolution can be easily followed
and possible design errors can be identified. The
advantages of using a statistical DoE (Design of
Experiments) approach are significant: a proper DoE
should allow the application designer to obtamn the
maximum information with the minimum of experunents
(Totaro and Perkins, 2003).

BACKGROUND AND RELATED WORK

Statistical DoE offers a way for the researcher to
determine, before the runs are made, which specific
configurations to sunulate so that the desired information
can be obtained with the least amount of Law and Kelton
(2000). Additionally, an experimental design that has been
properly executed and analyzed (1) facilitates the
identification of effects of various factors (variables) that
might affect performance and (2) helps to determine if a
particular factor has a significant effect or if the observed
difference is due to random variations that resulted from
errors 1n measurement and uncontrolled parameters
(Jain, 1991).

The DoE technique can be successfully applied to
black-box cases when the aim 1s to optimize a quality
characteristic (system response) by adjusting input data
(factors). Input data are known as factors/variables, wlich
can be known or controlled. There can be other factors
that influence the system but without the possibility of
controlling them. Thus they represent a source of
uncertainty and they are called unknown or uncontrolled
factors. The output of the system is called a response
variable and is actually a quality feature that has to be
studied and optimized. More in-depth mformation about
statistical DoE and empirical model building can be found
by Tain (1991), Box et al. (1978), Kleijnen et al. (2004) and
Montgomery (2001). Several guidelines for conducting
empirical research in software engineering are presented
(Kitchenham et al., 2002).

As shown by Ruthruff et al. (2006) the use of an
experimental program analysis paradigm can help
researchers and software developers identify limitations
of analysis techmques, improve existing experimental
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program analysis technicques and create new experimental
program analysis techniques. These techniques might be
able to draw inferences about the properties of software
systems in cases n which more traditional analyses have
not succeeded (Ruthruff et al, 2006). For example,
rigorous statistical techniques are used for embedded
Java performance analysis (Rao and Murakami, 2008).
Researchers build regression models that relate overall
Tava system performance to various micro-architecture
metrics and their interactions. The models developed are
easy to interpret and achieve accuracies that are close to
measurement errors. Through this modeling technology,
the system architect is advised to simultaneously tune the
Tava runtime parameters for optimal performance.

The use of efficient experimental designs within a
sequential strategy also seems to be a good policy for
selecting the components of an application that offer
optimum results for a certain problem. Such an approach
1s described by Stewardson et al. (2002) for selecting just
a few of the many possible combinations of Genetic
Algorithms for use in complex scheduling problems. As
the selection must be balanced and cover each type of
parameter and combinations of these, equally, the
researchers use an experimental design as such a method
can reduce the level of uncertainty and quickly cut
through complexity. The DoE techniques are also used
(Ridge and Kudenko, 2007) where a predictive model of
the performance of combinatorial optimization heuristic
over a range of heuristic tuning parameter settings and
problem instance characteristics was built.

Various statistical approaches for analyzing the
performance of parallel applications have been proposed
recently by Zheng et al. (2010), Barnes ef al. (2008) and
Whiting ef al. (2004). Nevertheless, neither of them
addresses the use of such techniques for building a
generic parallel application design model. For example,
Zheng et al. (2010) used statistical models to predict the
performance of large scale parallel applications using the
performance of sequential execution blocks. This is done
by scaling down the simulation of the problem size to
capture the characteristic of the application. Using
machine learning techniques, the knowledge gained is
then turned into a statistical model for each sequential
execution block, which can be used to predict the
application at full scale running on an emulator.
Barnes et al. (2008) used multivariate regression to predict
the performance on large processor configurations using
traimng data obtained from smaller numbers of
processors. Hven though this method can be used to
predict parallel program scalability, the technique is
unable to offer any information about the factors
influencing the performance of the parallel application.
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The statistical experimental design techniques are
used by Whiting ef al. (2004) to evaluate performance of
the parallel implementation of a complex computational
phylogenomics problem. Researchers also present several
designs of experiment procedures like full factorial,
fractional factorial and D-optimal design. Evaluation of the
parameters is performed using a D-optimal design
procedure and several conclusions are drawn regarding
the influence of search space, chosen ratchet algorithm
and number of processors on the performance of the
application.

In contrast with other study, our approach represents
a design strategy for parallel applications based on a
predictive performance model. The aim of the statistical
experimentation stage is twofold: to determine the factors
mfluencing the performance of the parallel applications
and to predict the application performance in various
execution conditions during the design stage.

PROPOSED PARALLEL APPLICATION
DESIGN MODEL

The model proposed for the design of a parallel
application requires 3 stages presented in Fig. 1. The first
stage contains the classic steps of parallel application
design as presented by Foster. The result of this stage
represents the prototype of the parallel application.

After a design 1s complete, an important role 1s played
by performance models (Foster, 1995). Valuable
mformation about both an application design and its

implementation can be acquired by comparing the
observed and predicted execution times. These values will
seldom completely agree due to the idealized nature of the
models used in design stage. If major discrepancies
emerge, these are due either to an incorrect model or to an
inadequate 1mplementation. In the case of an ncorrect
model, empirical results can be used to determine the
deficiencies of the model and to reassess the quantitative
tradeoffs used to justify design decisions. In the second
case, we can use the model to identify areas in whuch the
implementation can be improved.

The second stage of the proposed design model aims
at evaluating the performance of the application prototype
and requires the definition of an experimental design plan,
performing the experiments, statistical analysis and
interpretation of the results. In this step functionality
tests and performance measurements are performed on the
prototype: processing time, communication time, size of
data transferred between processors, etc.

The statistical analysis can provide information about
the application performances and can help in eliminating
the factors that don’t have a direct influence over the
response. Moreover, the behavior of the parallel
application can be modeled based on the resulting data
set. Thus, as illustrated in the following section, a
prediction can be made for the response variables as a
function of the input factors.

Following the statistical analysis, if the obtained
information is not satisfactory it can be decided to
reconsider one or more application design stages: for

Stage 1: Parallel Stage 2: Apply
application design design of experiment
Problem
partitioning | ¢ NO Validated results? OK—l
l T Stage 3:
Design Application deployment
commumications | ¢ Statistical analysis
Agglomerate B Ram application
< prototype
Processor P Definition of
Mapping < cxperimental design

Fig. 1: DoFE based parallel application design
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example, the communication patterns are good, but there
is a bad design of the data-partitioning model.

The first two stages are reiterated until the
experimental results are validated against the imposed
performance metrics. At this point the third and final stage
can be employed: application deployment.

PARALLEL APPLICATION ANALYSIS
USING DOE TECHNIQUES

The performance of a parallel application is usually
evaluated against factors such as speedup, efficiency,
scalability that assume measurements of processing time,
communication time and idle time. Using statistical
analysis of experimental data by way of analysis of
variance (ANOVA) techmques, we are able to identify
main effects and interaction of factors that explain such
performance metrics. The ANOVA (analysis of variance)
table for a response variable 1s a useful tool for identifying
main and interaction effects of factors that are statistically
significant.

The ANOVA table has six columns: the source of the
variability, the sum of squares (S3) due to each source
(the variation), the Degrees of Freedom (df) associated
with each source, the Mean Squares (MS), which is the
ratio SS/df (the variance), the F-statistics, which are the
ratios MS/MSError and the P-values for the F statistics. A
large ratio of the mean squares (the F-statistic) implies
that the amount of variation explained by the considered
source is large in comparison with the residual error. The
p-value 1s of particular mterest to us, since it serves as an
mndicator of “statistical significance” as explained in the
next section.

The steps that need to be followed for preparing an
experiment are:

¢+  Defining the objectives of the experiment: Our
underlying goal of this worl is to demonstrate the
effectiveness of a statisical DoE strategy when
evaluating the performance of parallel applications
and identify the design faults. To this end, the
specific objectives of our experiments are to quantify
the effects of possible influential factors on the
performance of the parallel application. Using these
effects, we then develop empirical models, which can
be used to predict performance of the parallel
application ruming over the range of values
examined m this study

+  Selecting the input factors (and their levels): The
next step in the experimental design is the selection of
potential factors that may impact the performance of
a parallel application
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Selecting the response variables: Next we must
select the performance responses of the parallel
application

Selecting the appropriate design: We use a two
level full factorial design. For simplicity and
computational purposes, it is often useful to code the
factor levels as a + /- or 0/1 level. Factorial designs
are efficient (mstead of conducting a series of
independent studies, we are effectively able to
combine these studies into one) and are the only
effective way to examine interaction effects
Simulation and data collection: In this step the
parallel application tests begin. Depending on the
number of input factors, the applications must run n
times and at each run we must use mput factors
values according to the design plan and collect the
response

Computing the main and interactive effects:
Intuitively, the main effect of a factor refers to the
average change in a response variable produced by
a change in the level of the factor. The interaction
effects are those combinational effects that two
factors have on the two response metrics (Totaro and
Perkins, 2005). An interaction effect means that two
factors interact if the performance response due to
factor i at level m depends on the level of factor j. In
other words, the relative change in the performance
response due to varying factor 1 13 dependent on the
level of factor j. Having examined the apparent main
effects of each of the factors on the response metrics,
we next turn our attention to interaction effects,
which are those combmational effects that two
factors have on the two response metrics. Thus, two-
way factor mteraction effects plots can be used to
visualize the performance changes that result from
the combined varying of two factors from their-levels
to their + level

Building an empirical model for the selected
response variables: After rumming the application
using the selected input factors, their influence on
the response variables is analyzed. We are now ready
to build empirical models that are based on the data
we have collected. The statistical DoE approach 1s
what facilitates thus. The basic steps of the
model-building process are: model selection, model
fitting and model validation. These three basic steps
are used iteratively until an appropriate model for the
data has been developed. In the model selection step,
the main and interactive effects determined from the
ANOVA table and assumptions about the process
are used to determine the form of the model to be fit
to the data. Then, using the selected model and
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possibly information about the data, an appropriate
model-fitting method is used to estimate the unknown
parameters i the model. When the parameter
estimates have been made, the model 1s then carefully
assessed to see if the underlying assumptions of the
analysis appear plausible. Tf the assumptions seem
valid, the model can be used to answer the scientific
or engineering questions that prompted the modeling
effort. If the model validation identifies problems with
the current model, however, then the modeling
process 1s repeated using information from the model
validation step to select and/or fit an improved model
Interpretation of the results: This final stage aims at
correlating the effects of the considered input factors
on the analyzed response of the parallel application
and should be used to validate/invalidate the design
of the application according to the imposed
performance objectives

CASE STUDY: SORT-LAST
PARALLEL RENDERING

In order to verify the proposed application design
model, the following steps were followed:

Creating a parallel application that uses domain
decomposition

Defmition of a full factorial DoE plan m order to
analyze performances of the parallel application
Application run and data collection

Analysis of factors variation and regression
Interpretation of the results in order to find possible
design faults

Parallel application: We demonstrate the use of the
proposed model in analyzing the design of a parallel
rendering application. The rendering process consists of
two main stages: geometry processing (model-view
transformations, lighting) and rasterization (shading,
visibility processing). Assigmng to each processor a
subset of the graphic primitives in the scene usually
parallelizes geometry processing. Assigning a portion of
pixel computations to each processor parallelizes
Rasterization.

In essence, computing the effect of each geometric
primitive on each pixel represents the rendering task.
Due to the
transformations, a graphic primitive can fall anywhere on
(or off) the screen. Thus, rendering can be seen as a

arbitrary nature of the model-view

problem of sorting the graphic primitives to the screen
(Molnar et al., 2008). The stage at which this sort takes
place determines the structure of the resulting parallel
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rendering system. Generally, this sort can take place
anywhere in the rendering process: during geometry
processing  (sort-first) between geometry processing
and rasterization (sort-middle) or during rasterization
(sort-last). In sort-first rendering raw primitives are
redistributed before determining their screen-space
parameters. Sort-middle  rendering  redistributes
screen-space primitives. Sort-last rendering redistributes
pixels, samples, or pixel fragments.

In sort-last parallel rendering,
object-space parallel rendering, each processing node 1s
responsible of rendering a block of data, irrespective of
their visibility on the sereen (Fig. 2). Each working node
is assigned a block of data and renders the corresponding
image. In the last stage, the master process gathers the
images from all workers and composes the final image by
depth-sorting the pixels.

Owr analysis involved such a sort-last parallel
rendering application designed using the message
passing programming model. The application 1s developed
in C++ and parallelization has been achieved through the
use of LAM 7.1.2/7.1.4 implementation of the MPI-2
standard. Even though rendering 1s usually a callback
process, m this case we are mterested in analyzing the
behavior of the application when producing very large
images of very large datasets. The input datasets used
represent point clouds acquired with a 3D laser scarming
device with position (x, y, ¢) and color (1, g, b, a)
information associated to each point.

also known as

Designing the experiment: Since our goal in this paper 1s
to illustrate the effectiveness of the statistical DoE
strategy, we select only a subset of three factors that can
be considered for the parallel rendering application:
X -size of input data, i.e., number of points in point cloud
(min  value-100000, max value-4000000), X,-final
image size, i.e., resolution in pixels (min value-480000,
max value-30000000) and X,-number of processors (min
value-6, max value-8).

We consider the following performance responses for
the parallel application: Y -the amount of data exchanged
between processes, Y,-processing and Y-
communication time.

We use a two level full factorial design. Table 1
shows all possible combinations of factor levels where
each combination corresponds to a simulation scenario.

The environment used to test the proposed model
consists in a cluster with the following configuration:

time

One front-end computer with 4x3.66 GHz Intel Xeon
processors, 4x146 GB hard drive and 8 GB of RAM
12 computing nodes with 1x2.33 GHz Intel CoreZ Duo
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Master Process
Distribute work (NP/n)

7\

Master Process
Gather results and compose
final image

Fig. 2: Sort-Last parallel rendering

CPUJ, 1x160 GB hard drive and 2GB of RAM with Gigabit
Ethernet card connected with CAT6 cables via a Gigabit
switch

Table 1 presents the encoded values used for
performing the simulations and the values of the response
variables acquired according to the design plan. The
ANOVA tables for the selected response variables are
presented in Table 2.

The analysis of wvariance can be used to test
hypotheses about the main factor effects of X, X, X; and
their interactions (XX, X,x¥X, and X,xX;) on the
response. In this example there are six hypotheses to be
tested for each response: main effect X/ X,/X,is not
significant for the variation of the response, mteraction
effect 3 X,/ X »¥/ X, »X; is not present. For example,
for main effect X, the null hypothesis means that there is
no significant variation of the response whether the input
data set contains 100000 or 4000000 points. For an
interaction effect, the null hypothesis means that the
respective two mam effects are mdependent.

One way to report the results of a hypothesis test is
to state that the result of the null hypothesis was or was
not rejected at a specified ¢-value or level of sigmficance.
The p-value (Table 2) is the smallest level of significance
that would lead to rejection of the null hypothesis with
the given data. If any p-value is near zero, tlus casts
doubt on the associated null hypothesis, that is, there is
a main effect due to the considered factor. In order to
determine whether a result is statistically sigmficant a

(}mu%

Legend:

WP;: Worker process

NP : Size of input data

IM, : Image produced by processor i
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bound for the p-value needs to be chosen. Tt is common
to declare a result significant if the p-value is less than
0.05 or 0.01 (Montgomery, 2001).

Using the experimental data we now try to model the
response variables as functions of the input factors. For
all three responses we first develop a linear regression
model that defines the functional relationship between the
influential factors and the performance metrics. Other
regression models can be used if the linear regression
doesn’t provide an adequate model. The general form of
the fimetion describing the behavior of a response Ycan
be written as:

(1)

i XXX, Tt E

ijek

Y=5, +iﬁjxj + iﬁ,,X,XJ +
i<

i<j

where, p represents the number of variables (factors) and
g represents the residual error (the difference between the
predicted result and the one measured experimentally).
Detailed information about regression techmiques can be
found (Montgomery and Runger, 2007).

In the following steps we estimate the model
parameters for each response and check the adequacy of
the model in order to validate it.

Analysis of response Y,-amount of data exchanged
between processes: The results obtained when rumming
the application on 6 and 8 processors reveals the fact that
response Y, depends solely on factor X, (final image size),
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Table 1: Encoded design plan and measured values for the response variables

Runs X, X, X Y, Y, Y.

1 0 0 0 7500 2.40813 0.661006

2 1 0 0 7500 20.8237 2.288

3 0 1 0 781250 177.86 45.7456

4 1 1 0 781250 199.783 66.1748

5 0 0 1 7500 3.02641 0.880815

6 1 0 1 7500 21.7683 2.535107

7 0 1 1 781250 243.713 89.9857

8 1 1 1 781250 264.943 90.3144

Table 2: Analysis of variance - ANOVA table for responses Y, ¥, and Y

Responce Source S8 df MS F P-value

Y, X 0.0005 1 0.0005 1 0.5
X 1.19738E+12 1 1.19738E+12 2.45223E+15 1.34E-8
X -0.0005 1 -0.0005 -1 1
XX -0.0005 1 -0.0005 -1 1
XXz -0.0003 1 -0.0003 -1 1
XX -0.0005 1 -0.0005 -1 1
Error 0.0005 1 0.0005
Total 8§ 1.19738E+12 7

Y; X 806.2 1 806.2 6207.59 0.0081
X 87837.6 1 87837.6 676315.45 0.0008
X 2197 1 2197 16916.4 0.0049
XX 4.5 1 4.5 3o 0.1072
XX 0.0168 1 0.0168 0.13 0.7802
XX 2094.7 1 2094.7 1612812 0.005
Error 0.1298 1 0.1298
Total 8§ 92940.2 7

Y; X 21 1 21 795.67 0.0226
X 11692.2 1 11692.2 4525903.49 0.0003
X 2984 1 2984 115523.57 0.0019
XX 0.8 1 0.8 312.01 0.036
XX 0.00004 1 0.00004 0.16 0.7588
XX 286.8 1 286.8 1110021 0.0019
Error 0.0026 1 0.0026
Total 88 12280.3 7

while factors X, and X ;have no influence on this Y, =0.15625 %, (4

response. The ANOVA (Table 2) confirms this
observation: the null hypothesis H: p = 0 is rejected. Tt is
important to notice that this behavior is also consistent
with the analysis of parallel rendering methods provided
(Molnar et al., 2008).

Following this observation we infer that Y, is linearly
dependent on factor X, which can be stated as:
(2)

Y =f +Bx, +e

where, B, and B, can be determined using the values
provided m Table 1 for mput factor X, and the
corresponding measured response and £ represents the
prediction error. The following values for the coefficients

{

providing that the equation describing the behavior of Y,
has the following form:

are obtained:

f=0
B, =0.15625

3)
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where, x, represents the resolution of the resulting image.

Table 3 shows that there is no difference between the
measured evolution of response ¥, with respect to X, and
the values computed using Eq. 4, i.e., € = 0. Factor X, (size
of input point cloud) doesn’t affect the
communicated data, but it influences the processing time
as it results from the following analysis.

size of

Analysis of response Y,-processing time: We can see
from Table 2 that the largest effects on response Y, are X,
X, X; and the X X, mteraction. Choosing a value of 0.01
for the smallest level of significance that would lead to
rejection of the null hypothesis with the given data, the
regression model used to obtain the predicted values is:

Y, =0, +Bx B, +6:%, +BuXX, +e (5)

Using the values in Table 1 the aun 1s to compute the
regression coefficients, B, for the Eq. 1 where we consider
the response to be Y, These coefficients can be
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computed by minimizing the residual error using linear
regression (Barnes et al., 2008). Using the values obtained
for the regression coefficients Eq. 5 becomes:

Y, =—6.52*107" +4.92%10°x —3.75*107x,
+1.25%107 x, +6.54%107 x,x, +¢

(6)

The measured and predicted values for response Y, are
presented in Table 4. We validate the regression model in
Eq. 6 used for response Y, using standard methods for
residual analysis (normal probability plot of residuals and
residuals standardization) as no anomalies in the fitted
model were revealed (Fig. 3a).

Using the function that describes response Y,, the
behavior of the system can be predicted m the case of
varying the number of processors as m Table 5. Thus,
using the B coefficients determined for 6-8 processors, the
processing time for 10-12 processors can be computed.
These values determined with Eq. 6 for Y, are presented in
Table 4 as they are compared with the actually measured
values.

Analysis of response Y,-communication time: In order to
analyze the communication time, the same rationale as for
¥, can be used. It can be observed from the Anova table
(Table 2) that the response Y; depends on factors X; and
X, and the X, X, mteraction. In this case, the following
equation can be used to model the response:

(7)

Y; =By +Bx, +Bix +Pxx; e
Using the P coefficients determined for Y, Eq. 7 becomes:

Y, =—104*107 —1.35%107x, +
1.22%107 %, +242*%107 x,%, +2

(&)

Table 3: Evolution of measured and computed response Y, with respect to
input factor ¥
Tmage resolution Y;-Size of communicated Y,-Size of communicated data

(pixels) data (KB)-measured- (KB)-computed with Eq. 5-
480000 7500 7500
1000000 15625 15625
10000000 156250 156250
25000000 390625 390625
50000000 781250 781250
100000000 1562500 1562500
120000000 1875000 1875000
150000000 2343750 2343750
160000000 2500000 2500000
170000000 2656250 2656250
172000000 2687500 2687500
176000000 2750000 2750000
178000000 2781250 2781250
179000000 2796875 2796875
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The regression model in Hq. 8 is validated by
observing a normal distribution of the residuals, just like
inthe case of response Y, (Fig. 3b). Next, they are used to
calculate the prediction for the communication time in the
case of using 10-12 processors. Table 6 shows the
measured and predicted values for Y; in both cases: 6-8
and 10-12 processors.

Interpretation of the results: The design of parallel
rendering algorithms can be a difficult task. In some cases
existing sequential algorithms can be easily transformed
1n parallel algorithms, while in other cases new algorithms
need to be designed from scratch. Regardless of ther
origin, most parallel algorithms introduce overheads not
present in their sequential counterparts. These overheads
can appear due to: inter-processor communication, load
imbalances, additional or redundant computations,
increased storing demands for auxiliary or replicated data
structures. Some of these concepts are specific to parallel
algorithms while others (data coherence, object-space to
image-space data mapping) correspond to the rendering
problem.

Y 2 residuals (6-8)- normal probability plot
0.95-
0.90

0,75 e T

0.50

Probability

0.25

0.10
0.05}"

-0.5 0

Y 3 residuals (6-8)- normal probability plot
0.95 (b) : ; : ; ; ;
0.90}:

0.75 -

Probability

0.50/ !

0.25}:

0.0/
0.05}" i i
| 1 1

4 16

i i
6 08
Data

1 1 1 1
0 02 04 O 10 12 1

Fig. 3: Normal probability plot of the residuals: (a) for

response Y, and (b) for response Y,
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Table 4: Measured and predicted values for processing time (response Y;) in the case of 6-8 processors (left) and 10-12 processors (right)

6-8 processors

10-12 processors

Y, measured ¥, predicted 2 Y, measured W, predicted 2
2.40813 2.29 0.11 3.62407 4.05 -0.43
20.8237 21.49 -0.66 221726 2324 -1.07
177.86 177.92 -0.06 1111.68 1103.87 7.81
199.783 197.12 2.67 1131.72 1123.06 8.66
3.02641 3.17 -0.15 4.27239 4.93 -0.66
21.7683 22.36 -0.59 23.2734 24.12 -0.85
243.713 243.53 0.19 1359.53 1338.08 21.45
264.943 262.72 2.22 1374.250 1357.27 16.98
Table 5: Values of input factors used for predicting response Y, in the case of varying the number of processors

X X X3
100000 480000 10
4000000 480000 10
100000 1.79E+08 10
4000000 1.79E+08 10
100000 480000 12
4000000 480000 12
100000 1.79E+08 12
4000000 1.79E+08 12
Table 6. Measured and predicted values for communication time (response Ys) in the case of 6-8 processors (left) and 10-12 processors (right)

6-8 processors 10-12 processors

Y5 measured Y; predicted [ Y;measured Y, predicted 4
0.661006 0.6004 0.0606 1.11392 1.1134 0.0006
2.288 0.6004 1.6876 2.79507 1.1134 1.6817
65.7456 65,7535 -0.0079 407.274 408.6592 -1.3852
66.1748 65,7535 04213 408.065 408.6592 -0.5942
0.880815 0.8569 0.0239 1.34075 1.3698 -0.0291
2.55107 0.8569 1.6942 3.03985 1.3698 1.6700
89.9857 89,9584 0.0273 493,946 495,2499 -1.3039
90.3144 89,9584 0.3560 494,171 495,2499 -1.0789%

For the discussed parallel rendering application we
aimed at describing the application behavior with the help
of an equation and using this equation to study (and
predict) the performance of the application when varying
the number of processing units.

Using the empirical models built for the three
responses, we note that both the processing time and
communication time depend on the resolution of the final
the local result of each rendering processor to a
compositor node. The larger the produced image, the more
time it takes to commumnicate it. Moreover, this can
represent a communicational bottleneck m the parallel
application. Another important conclusion regards the
number of processor used for distributing the rendering
task. Using a larger number of rendering processors
doesn’t seem to provide better total processing times.
This scalability issue could be solved by replacing the
final image compositing stage with a more efficient
mechanism, for example routing the messages m the
network using predefined paths in a grid or a binary tree
or using a planned image compositing.
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Considering the above observations, in the event of
simultaneously executing the application by several users
or if maximum memory allocation limits are enforced, the
application becomes extremely limited end we expect poor
unless

performances parts of the applicaton are

redesigned.
CONCLUSIONS AND FUTURE WORK

In this study we proposed a model for rigorous
testing the design of a parallel application by defining
an efficient test set and predicting the performances of
the application in other running conditions. We have
shown that this can be achieved using statistical
analysis that allows for an easier identification of the
errors appearing in each design stage. The proposed
method facilitates the elimination of the factors that do
not influence the analyzed response of the application,
while giving a better view on the factors that have the
greatest impact on the performance of the parallel
application.
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The interpretation of the results obtained using the
statistical analysis has to take into account the imposed
objectives. In this study we presented an example where
the evolution of communication time, processing time and
volume of transferred data were followed in the case of a
parallel rendering application. In this example the
statistical analysis emphasized that deficiencies exist in
the parallel application model. Tn this case, the bad
application design leads to poor scalability and
unsatisfactory speedup.

The DoE techniques also allow the designer of a
parallel application that uses domain decomposition to
test the performance for real input parameters without
having to effectively run the application. The estimations
obtamned by statistical analysis can be used to optimize
the resources needed by the application at a certain
moment and also to mmprove the application m the sense
of dynamically adapting the execution to the mput/output
data. If the programming environment allows 1t, it could
also be useful to dynamically modify the number of
processes and/or processors used by the parallel
application. Using the proposed method can also bring
useful insight regarding certain runtime conditions, which
can be obtained based on the considered parameters. This
is particularly useful for predicting the necessary
resources for the parallel application. In this respect, a
merely considered but important factor 1s the fact that the
application 1sn’t the only one runmng on a cluster. Thus,
the load of the mnternal network of the cluster varies due
to data transferred by all applications. Moreover, the
resources of the cluster can be reserved for several
purposes (i.e., academic, research or commercial
purposes). An application that 1s not aware of this will
have different performances at different moments of time.
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