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Predicting Molecular Weight at Certain Temperature Isothermally using Neural Network
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Abstract: In this study, molecular weight control studies and the development of advance control were carried
out. In-line measurement device such as Gel Permeation Chromatography (GPC) has become available, however,
it is very expensive and the results always posses substantial time-delayed measurements from analytical
laboratory measuring devices. A method of predicting molecular weight performance during polymerization
process was proposed using neural network system. A neural network model was developed to predict leading
moments of molecular weight using backpropagation algorithm of neural networks system for Methyl
methacrylate (MMA) polymerization. Plant input and output were simulated from the first principle model for
MMA polymerization and then been utilized to train multilayer neural network system. Process inputs such as
reaction temperature, monomer conversion and lmtiator concentration were the main variables affecting
properties of molecular weight averages. A neural network model was generated from the traimng process after
it successfully learned the relationship between process inputs and product outputs. This neural network model
was applied when predicting molecular weight of Polymethyl methacrylate (PMMA) which is useful in
umplementation of the on-line control of polymerization process.

Key words: Backpropagation algorithm, batch polymerization, MMA polymerization, modeling, molecular

weight control, neural network

INTRODUCTION

Polymerization is well known as a very complex
reaction process as it exhibits multiple steady states with
a complex nonlinear behaviour and the reaction 1s
extremely exothermic. Polymer end properties are very
important as they affect the quality of the desired final
form and shape (Achilias and Kiparissides, 1992). This
end properties (mechanical properties) and characteristics
of polymer end product have a very strong correlation
with molecular weight properties. Many researchers have
studied the importance of controlling polymer molecular
welght properties to get the deswed quality of polymer
product (Ponnuswarny et al., 1987, Takamatsu et al., 1988;
Bersted and Anderson, 1990; Soroush and Kravaris, 1992;
Crowley and Choi, 1997). Therefore, it is essential to
control molecular weight properties on-line to achieve
better quality of polymer product.

Studies on molecular weight control have been done
as well as developing advanced process control by
researchers. Yet it 1s still not fully been applied in polymer
reaction control industries due to limitation of efficient
measuring devices and expensive operating cost such as
in-line  Gel  Permeation Chromatography (GPC).
Furthermore, GPC results always possess substantial

time-delayed measurement from analytical laboratory
measuring device. Advance process control design and
fabrication needed to be sophisticated for manufacturing
practice by emphasizing on the maximization of monomer
conversion, minimization of reaction rate and operation
cost but not to disregard the importance of safety feature
throughout the polymerization process.

Leading moments of molecular weight which are the
number average molecular weight (M,) and weight
average molecular weight (M,,) are the key variables of
polymer product quality control. These variables cannot
be measured directly and accurately during polymerization
process. Another way of determining these variables 1s by
using mathematical equations. Many methods of
modeling and control of polymerization systems have
been developed by a number of authors and has been well
elucidated n a study by Kiparissides (1996).

In this study, modeling neural network system using
simulation data has been studied A neural network
system was developed using backpropagation algorithm
to predict the leading moments of molecular weight.
Simulation model of Chiu ef al. (1983) had been utilized as
actual plant data input and output to train the neural
network model. Multilayer newral network system was
used in tramming process.
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MMA BATCH POLYMERIZATION

MMA polymerization has become a research choice
over the past decade. This polymer 1s often polymerized
by free-radical, chain addition mechanism which normally
mvolves three common fundamental steps: imtiation,
propagation and termination. Polymerization process is
mitiated by chemical compound which is called the
initiator. The common used initiator for producing free-
radical for MMA polymerization process are the
2, 2’-Azobisisobutyronitrile (ATBN) and  Benzoyl
peroxide (BPO). Imtiation process begins with the creation
of an ‘active” centre such as a free-radical or carbonium
ion. It continues to propegate by addition of more
monomer to the growing chain end. Finally, the addition
of monomer molecule to the growing chamn end is
deactivated by chain termination which can occur in two
ways: termination by combination and termination by
disproportionation. In polymerization process, these three
steps  are findamental However, polymerization
occasionally involves side reaction which happens when
a radical abstracts a hydrogen atom from a neighbour
molecule. This reaction is called chain transfer reaction. It
15 a chain-breaking reaction which decreases the size of
the propagating polymer chain. In this study, chain
transfer reaction 1s ignored for convenience. Kinetic
reactions by Chiu et al. (1983) have discussed the
umportance of a fundamental understanding of the various
factors governing the reaction kinetics of polymerization
mcluding gel effect region. This model was developed by
examining the gel effect and glass effect also considering
the effect on the termination and propagation rate. The
model consists of reaction mechanism of straightforward
initiation, propagation and termination with negligent of
chain-transfer. The developed model has described the
polymerization process over the entire course of reaction
using first principle, model make it the choice of this
simulation work. MMA polymerization has been
conducted isothermally at different temperatures at 50, 70
and 90°C.

Figure la-c show initiator, conversion and molecular
weight average profile of MMA polymerization at 50°C,
respectively. Figure 2a-¢ are the results for initiator,
conversion and molecular weight average of MMA
polymerization at 70°C, respectively. Figure 3a-c are
the results for mitiator, conversion and meolecular
weight average of MMA polymerization at 90°C,
respectively.

Figure la, 2a and 3a show the initiator profiles for
MMA polymerization at different isothermal temperatures
which are 50, 70 and 90°C, respectively with initiator
loading I, = 0.0258 mol L ™" and [, = 0.01584 mel L™, By
definition, the initiator concentration is number of mol
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Fig. la: Initiator (I) concentration vs. time of MMA
polymerization at 50°C for I, = 0.0258 and
0.01584 mol L™
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Fig. 1b: Conversion vs. time of MMA polymerization at
30°C for I, = 0.0258 and 0.01584 mol L™
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Fig. lc: Molecular weight average wvs. conversion of
MMA polymerization at 50°C for I, = 0.0258 and
0.01584 mol L™
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over reactant volume (mol vol. ™). In this case, reactant
volume  decreases  over  polymerization time
correspondingly by volume expansion factor equation,
€ = (pu—P,¥p, where, p, 1s monomer density and p,
and is polymer density. This incident had caused
the volume expansion factor (€) decreases during the
polymerization reaction which also means decrease in
reactant volume. Since, the concentration is mversely
proportional to volume, decrease in volume had mcreased
the value of concentration This 15 the reason why
initiator profiles were slightly escalating over the
polymerization process time which is not due to addition
of more initiator amount, except because of the declining
in reactant volume itself. This was supported by sudden
mcreased in monomer conversion as shown i the
conversion profiles at 50, 70 and 90°C in Fig. 1b, 2b and
3b, respectively.

Fig. 1b, 2b and 3b show conversion profiles. From the
figures, the conversion profile for MMA polymerization
started to increase gradually. After a certamn time, the
comversion increased drastically for several minutes
before 1t started to slowly stabilize and constant for the
remaining operating time. Most of the MMA has been
hugely used up to produce PMMA causing the drastic
increase of conversion profiles. The initiator profiles
Fig. 1a, 2a and 3a, become slightly increased at the same
point of time as the conversion was drastically increased.
The conversion started to become constant slowly as the
gel effect occurs. This is a common phenomenon as
MMA bulk polymerization entails very high gel effect
condition.

Fig. 1lc, 2¢ and 3¢ show the number average
molecular weight (M,) and weight average molecular
weight (M,,) profiles for PMMA over conversion at
1sothermal temperature which are 50, 70 and 90°C,
respectively with 1mtial initiator loading I, = 0.0258 and
0.01584 mol L.™". These simulation results were used as
actual plant mputs and outputs in training the NN
model.

Tnitiator effect: Tnitial initiator loading concentrations, T,
used in this work were 0.0258 and 0.01584 mol L.™". From
the conversion profiles, it is obvious that initiator
concentration has a significant influence to the process.
As we can see from Fig. 1b, 2Zb and 3b, conversion of
MMA was quicker when using higher mitial imtiator
loading concentration which is T, = 0.0258 mol ™", The
condition applies for polymerization at all different
isothermal operating temperatures.

Temperature effect: Same goes to the polymerization
operating temperature. MMA polymerization simulation
has been conducted at temperature 50, 70 and 90°C. At
higher operating temperature, monomer conversion seems

to drastically increase faster in a similar way which the
1nitial imtiator loading concentration mfluenced monomer
conversion. MMA started to speed up converting to
PMMA as early after 15 mm of operating time at 90°C
(Fig. 3b) followed by 55 min at 70°C (Fig. 2b) and 180 min
at 50°C (Fig. 1b). The faster the MMA is converted to
PMMA, the shorter batch time needed to produce output
polymer product. Thus, it complies with polymerization
goal which are time reduction and cost effectiveness. The
initial mitiator leading concentration I, = 0.0258 mol L™
and the operating temperature 90°C has been chosen as
the optimum condition to be used later in neural network
training.

NEURAL NETWORK SYSTEM

Neural network has become increasingly popular for
modeling, optimization and control application of
polymerization processes recently (Zhang et al, 1998,
Krothapally et al., 1999, Zhang, 1999, Nasciunento ef af.,
2000; Kuroda and Kim, 2002, Tian et af, 2002,
Fernandes ef al., 2004; Roy et al., 2006). Neural network
is recognized for its function of information-processing
capabilities to learn and generalize data in order to solve
complex problems. Tt is also available in MATLAB with
all-encompassing function which enable user to build and
simulate neural network model. Size of neural network was
determined by the number of neurons m a system. A
neural network system basically consists of three layers;
input layer, hidden layers and output layer. In this study,
a two-layer network is used which contains 3 inputs in the
input layer, 10 number of neurons ina hidden layer and
2 outputs m the output layer. The input and output data
were generated by simulation using MATLAB software
programming based on first-principle model. Imtiator
concentration, monomer conversion and operating
temperature will be the input and M, and M,, as output. A
multilayer network 1s used to approximate virtually the
function of interest comsists of hyperbolic tangent
sigmoid in the first-layer and a linear transfer function in
the output layer.

A neural network model was developed in a written
MATLAB programme. Neural network training usually
ivolve a large number of data and parameters and in this
study; a total of 1455 data were used. These data were
split into three subsets of data and were assigned for
training, validation and testing set to improve
generalization while training the network model offline
using backpropagation algorithm. This algorithm used
mean square error (MSE) as the performance index. It is
also the most extensively adopted algomthm for the
learmng phase in current times makes it a converient
choice of this study. Running the simulation created a
network which contains values for network parameters
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(network weights and biases) which were stored as net.
These network weights and biases were adjusted by the
algorithm to mimmize the mean square error. The net was
used to generate new output prediction

SIMULATION RESULTS

A neural network programme has been developed by
using MATLAB software. Input and output data at
operating temperature 90°C were loaded to the written
neural network system to learn and apprehend the
relationship between input and the target output. After
the training, the network had stored all the network
parameters based on information supplied. This
mformation (network parameters) was used to sunulate
new output. To verify the NN prediction model, the
output results were compared with the molecular weight
data that have been used to train the network as in Fig. 4.
From Fig. 4, it was confirmed that neural network can
predict the output accurately. NN output followed the
exact same pattern as the molecular weight trained data.

To demonstrate the robustness of the NN prediction
model, noise has been introduced to the simulation data.
Noise has been introduced to each input and the existing
NN model was used to simulate output response using
this new data (noise data). This procedure was mtended
to mnitate real plant data. Figure 5-7 show the initiator,
monomer conversion and temperature profile with noise,
respectively. The NN output prediction is shown in
Fig. 8. As can be seen from Fig. 8, NN prediction is
acceptable regardless of small range turbulence
mtroduces on the mput data. The NN model can still
predict very well for M, and M,

Initiator and temperature effect: The effect of different
mitiator loading and operating temperature has also been
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Fig. 4: Molecular weight data and NN output prediction

at 90°C for I, = 0.0258 mol L™
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Fig. 8: Comparison of molecular weight trained data and
NN prediction using noise data

Table 1: Different polymerization condition used to test the trained NN
model
Different temperature

Different initiator

RMSE RMSE
T e L e
CC)  (melLH M, M, (moll™!) (°C) M, M,
87 00258 01112 0.0731 00250 90 01159  0.0921
88 00258 00848 0.0515 00253 90 0.0784 0.0616
89 00258 00555 0.0321 00255 90 0.0506 0.0386
91 0.0258 00530 0.0296 00261 90 0.0533  0.0417
92 0.0258 01036 0.0478 0.0263 90 0.0855 0.0663
93 0.0258 01988 0.0636 0.0266 90 0.1293  0.1032

studied using the existing NN model. Table 1 shows the
conditions used to test the trained network. Different
operating temperature with same 1nitiator loading and
different initiator loading at 90°C as tabulated in Table 1
have been used to test the NN model which was trained
at temperature 90°C and I, = 0.0258 mol L. Temperature
different were taken mn a range of £3°C wlule imitiator
loading range were £3%.

Figure 9-14 show the results for NN prediction of the
weight average molecular weight (M,,) using different
operating temperature with same imtiator loading. As can
be seen from the graphs, the minimum temperature
difference from the original operating temperature (+1°C)
at 89 and 91°C as in Fig. 9 and 12 which show the least
error of the NN prediction followed by the temperature
88 and 92°C (with £2°C difference) in Fig. 10 and 13. NN
prediction for the operating temperature difference +3°C
at 87 and 93°C presented in Fig. 11 and 14 which showed
that NN prediction 1s the most inaccurate which 1s
supported by the value of the root means-square error
(RMSE) of each NN prediction 1s shown m Table 1.

Figure 15-20 which show the results for NN
prediction of the number average molecular weight (M,)
using different operating temperature with same initiator
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Fig. 9: NN prediction of weight average molecular weight
at 89°C, I, = 0.0258 mol 1.7
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Fig. 10: NN prediction of weight average molecular
weight at 88°C, I, = 0.0258 mol L™
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Fig. 11: NN prediction of weight average molecular
weight at 87°C, T, = 0.0258 mol L™
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Fig. 19: NN prediction of number average molecular
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Fig. 20: NN prediction of number average molecular
weight at 93°C,, T, = 0.0258 mol L™
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Fig. 21: NN prediction of weight average molecular
weight at T, = 0.0255mol L7, T = 90°C
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Fig. 22: NN prediction of weight average molecular
weight at [, = 0.0253 mol L™, T = 90°C

loading. The trend of NN prediction for M, seems to
follow the trend of NN prediction for M, However, the
overall NN predictions for M, from +1°C to the maximum
difference +3°C were not as vague as the prediction for
M., based on the plotting trend and the RMSE value. Tt
was observed that temperature is affecting more on to the
M, than M,

Figure 21-32 show the results when using different
initiator loading at 90°C, respectively to test the NN model
(trained at temperature 90°C and I, = 0.0258 mol L™").
Figure 21-26 show the results for the NN prediction of
weight average molecular weight, M, while Fig. 27-32
represent results for the NN prediction of number average
molecular weight, M,. RMSE value for NN prediction 1s
higher at +3% difference m mitiator loading and lowest at
+1% of difference mn mitiator loading. These trends are
same with the temperature effect on molecular weight
prediction.
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Fig. 29: NN prediction of number average molecular
weight at T, = 0.0250 mol L', T = 90°C
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Fig. 32: NN prediction of number average molecular
weight at T, = 0.0266 mol L™, T = 90°C

From the observation, it was confirmed that neural
network prediction can only be modelled around the
operating condition which data is gathered. Hence, we
can conclude that the previously trained NN model could
not be used to predict other operating condition. The
network parameters are modelled exclusively only to
predict the trained operating condition at 90°C and initial
initiator loading T, = 0.0258 mol I.7". To predict molecular
welght using parameters other than the data that have
been used mn traming neural network 1s unfeasible.
Therefore, in order to be able to predict molecular weight
using parameters other than the data that used in training
neural network, it i1s suggested that the network are
tramed again using the data at its desired operating
condition.

CONCLUSION

In this study, written NN programme from
MATLAB is developed. Tt shows that this NN model
13 convincingly able to predict future performance
accurately and it can be used for further application.
Feedforward neural network system using past or history
data can also be used to give more data to train the
network in order to improve neural network model
generalization. This study did offer another approach in
simplifying polymerization reactor modeling process
using neural networlk system.
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