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Abstract: This study proposed a new cost-effective and convenient sampling design for a spatial population,
called “path sampling” and which offers the ability to sample all of the units in the researcher’s path traversed
during the sampling. Path sampling is a design in which the researcher selects a path or paths from start to
finish, as opposed to selecting units. Path sampling offers unbiased estimators for both mean and variance.
This paper covers the pros and cons of path sampling in comparison to sumple random sampling and cluster

sampling.
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INTRODUCTION
A spatial setting can be represented as a
geographical area partitioned mto single units. To
estimate the population total or mean in an area, the
population study area is divided into spatial units
generally of the same size and the numbers of objects are
counted on a selection of the units (Vincent, 2008). In
sampling 1n a spatial population, there are many designs
that can be used, for example, simple random sampling,
stratified sampling, cluster sampling and systematic
sampling or adaptive sampling m the case of a rare or
clustered population. Thompson (2002) illustrated the
application of those sampling designs to spatial
populations. In cluster sampling, a primary umt which is
a sampling unit, consists of a cluster of secondary units,
usually in close proximity to each other. In the spatial
setting, primary units include spatial arrangements as
square collections of adjacent units. A simple random
sample of m primary urmts 1s taken from M primary units in
the population. Thompson (1990) mtroduced adaptive
cluster sampling and this was compared to simple random
sampling using simulation study on the spatial
population. Dryver and Thompson (2005) and Dryver and
Chao (2007) proposed more efficient estimators for
adaptive cluster sampling and their illustrative examples
were applied to spatial populations. Thompson (2006)
proposed adaptive web sampling for sampling a
population in network and spatial settings. However, it
tends to be more efficient when used with many spatial
populations  (Thompson, 2011). Borkowski (2003)
proposed simple Latin square sampling +k designs which

was a new class of probability sampling design that
ensured that the sample was well-distributed over the
study region when a spatial correlation was present.

Many factors often go into choosing a sampling
strategy to implement. Such factors often include ease of
implementation, cost, efficiency, etc. (Thompson, 2002;
Mier and Picquelle, 2008). For example, simple random
sampling 1s more efficient, given the same number of data
points sampled as in cluster sampling; often, however,
cluster sampling will be implemented, as it is easier to
implement and may cost less (Lohr, 1599).

By applying simple random sampling and cluster
sampling, a sample may cover all of the regions since each
sampling unit has an equal chance of selection. Thus,
traveling from place to place to observe every umt
selected for sampling can be costly, as the distance
traveled can be quite long (Hansen et af., 1953). One of
the difficulties is that of collecting quantities of data
dispersed over a large area. The new sampling design,
path sampling, mntroduced mn this paper also addresses
ths 1ssue, especially when the distance travelled 1s a large
part of the sampling cost.

PATH SAMPLING AND TECHNICAL NOTATION

This section deals with defining all possible paths in
the spatial population, the path sampling scheme and
estimation. Suppose the researcher’s goal 1s to estimate
the population total or mean. Imitially, it will be assumed
that the study region can be partitioned into an rxc
(r: rows and ¢: columns) grid of rc quadrats or units. The
population consists of rc spatial umits. Each population

Corresponding Author: Mena Patummasut, Graduate School of Applied Statistics,
National Institute of Development Administration, Bangkapi District, Bangkok, 10240, Thailand

1355



J. Applied Sci., 12 (13): 1355-1363, 2012

unit is labeled with 2 coordinates, say (i, j) which are the
row and column of the umt, respectively, fori=1,2,3,...,
randj=1,2, 3, .., c. Associated with each umt (1, ), the
value of the population variable of mterest 15 denoted as
Yup- Lhe parameter of interest in this study is the
population mean:

Ay, L 1
“’WEZYGJ) méﬂ%)ycm (1)

i=l =l

Path sampling design is a sampling design in which
p distinct paths are selected by simple random sample
without replacement from q paths m the population and
the sample consists of all units in the selected paths.
Thus, a path(s) is chosen instead of units. In this study,
we use path sampling for spatial population.

Define all possible paths in a spatial population: A path
15 basically the path or route taken from start to finish. Let
q be the number of all possible paths. Let P, denote a path
kfork=1,2 3,..., q A path will be defined to start from
row 1 and column j*; that 1s, a umt labeled (1, 1*) 1s a
starting unit and end at a unit (1, j*+1). We began
sampling at an edge, at unit (1, j*), of a region because it
was assumed to be more convenient and less expensive
than beginning inside or in the middle of a region. The
path k taken will begin from such a starting unit and then
go to a particular row, say row k, to the end of the row on
the left and then go along row k+1 and comes back to the

starting unit. That is, path k taken will be from (1, j*)
to (2, 1*) thento (k, j*) to (k, 7*-1) to (k, 7*-2 to (k, 1) to
(k+1, Dto (k+1, 2) to(k+1, ¢) to (k, ¢) to (k, ¢-1) to (k, ¢-2)
to (k, *+1) to (k, -1 ;*+1) to (k, -2 7*+1) and to (1, j*+1).
Thus, for a spatial population of r rows, there are q = r-1
possible paths. In general, a path k in the spatial setting
population of r rows and ¢ columns can be written as:
Py = (1, %) (20 B, b (e 3, (6 10, (K, 520,00
(k 1), (et1, 1), (et1, 2,0, (K1, €), (O ), (k, e-1), (K, e-2),
(k310 (a1, 3%+, (k-2, 7%+1),..., (1, 1) fork =1, 2,
3,...,q=r-1.

The number of units belonging to path P is
2¢+2(k-1). All possible paths are shown in Fig. 1. Notice
that the numbers of units in each path are not the same.
We can see that the paths overlap m column j* and 7*+1
which are the gomg-out and coming-back column,
respectively. Also, the paths next to each other overlap
with the row between them. Thus, it can be written that
path k-1 and path k overlap mrow k fork =2, 3,..., g = r-1.
We assume that we sample the units in a logical manner
such that all units will only be observed once. Finally, the
researcher can define the rows and columns arbitrarily;
thus, path sampling is not limited in its starting and
ending position even written as is.

Path sampling design: The spatial population of r rows
and ¢ columns consists of umts labeled (1)) for1=1, 2,
3,...,randj=1,23,..., c. There are q = r-1 possible paths
in the population denoted by P, P, P,.. P, By

A, 1 (1,2) (1,3) a.iof T, 1 et 1 o
Y 3 — pl = »i Path 1
* (eN)) (2.2) (2.3) (2,0%) (‘lj**'l (2,¢-1) t Qo
————— » Path 2
Y 5.2 G0 G| G Gehl 1 G0
v _ i JR— » Path 3
|: 4. 1) 4. 2) (4,3) @, | @, (4,c-1) GRS
v ol »: Path 4
. 1) (5.2) (5, 3) M| s e (5. c-1) . 0)
< A < =
(r-1, 1) (r-1,2) (r-1, 3) (r-1,j%); (=1, j*+1); (r-1, c-1) (-1, ¢)
v | »; Path -1
() r.2) (r,3) (L) (r,j*+1) (r,c-1) ! (1,.0)

Fig. 1: All possible paths with a starting umit (1, 1) and all units labeled with two coordinates in a spatial population
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SRSWOR, p paths are selected from ¢ possible paths in
the population. Let P, denote a path k in the sample for
k=1,2 3,..,p The sample consists of all units in the
selected paths. The sample 1s represented as Py = (p,, pu,
Ps--» Dp)- The probability of selecting a sample is:

P to L

o 0

P P

since paths are selected by SRSWOR and the inclusion
probability of path k 1s:

T, =B=7p
q r-1

k

There is an overlapping of paths, so, there are repeat
observations. Although, each path has an equal
probability of selection, the units do not have an equal
probability of selection, as the same unit may be in one or
more paths. The inclusion probability of each unit is the
probability that a unit 1s included in the sample. In path
sampling, the inclusion probability of unit (1, ) 1s denoted
as Ty, It is defined as:

Ty = PQunit(i,j) isin thesample)
=1-P{uniti,j) isnot in thesample)
_ The No. of samples not containing unit (i, j)
The No. of all possiblesamples

=1

Since paths overlap in rows and columns, the
probabilities that umits are included in the sample are not
equal. That is, the inclusion probabilities of each unitina
path are not equal. All paths overlap in column j* and
7*+1 and some paths overlap in a row. Thus, the inclusion
probabilities can be divided into three cases due to
overlapping of paths.

i-2

1--F i=1,2,3,.r and j= j*and j*+1

i=2,3,.,r—1ad j=1,2,3, .., %1, j*+2, j*+3,....c

s
8

Note: Some of the combinations in the numerator of Eq. 2
can equal to 0.

i=lLrandj=1,2,3,.., %1, j*+2,j*+3,...,c

(2

Let the probability that both units (i, j) and (i',)') are
included in the sample be denoted by Ty, g, also called
the joint inclusion probability. It 1s defined as:

. _ The No. of samples containing both unit (,j) and (i’,j")
M

The No. of allpossible samples

The probability that the sample does not contain
either umts (1, 1) or (1', J') 1s:

f
[ﬁ] _ The No. of sample not containing eitherunits i, j) or {i’,{)
[QJ The No. of all possible sample

P

where, f = the number of paths not contaiming either units
(1, 1) or (1, 1. Thus:

@
_ P 3
Mgy =Ty + T — (1= q ) (3)

8

f can be found as follows. Let U, be a set of all umits in
column j* and j*+1 (units type 1). U={({, )1 =1,2,3,...,
rand j, =j* and j*+1}. Let U, be a set of all units not in
column j* and j*+1 and not in the first row or the last row
(unittype 2). U={(, j,) |1, =2,3,...,-1andj,=1,2,3,...,
J7-1,7%42, j*43,..., ¢}. Let U, be a set of all units in the first
row and the last row but not in column j* or j*+1 (unit
type 3). U;={(15,75) |1, = 1, randj, = 1,2, 3,..., %1, J*+2,
1%+3,..., ¢}. A formula of f is shown in Eq. 4:

min(i, i1 — 2 for (i, j) and (¥j) € U,
i2 for (i, j}e U, ad (i",j0e (U, U, )andi=i'
i-3 for (i,j)e U, e and (i’ jNe U, andi—i'=1
orfor (i, j)€ U and(i", j) U, and i1
-4 for (1, jye U, and(i',j)U, andi-'>2
q-1 for (i, j) and(i’, jhe U, andi-i' (4)
q-2 for (i, j) end (i",j') € U, and|i-i]=0
orfor(i, j)e U, and(i', je U, and|i-i|]=1
orfor(i, jyand(i',j')€ U, andi =1’
q-3 for(i, j)and{i', j"»€ U, andfi - j=1
orfor{i,j)e U, and (i’ j')e U3andi- j|= 2
q-4 for (i, jjand(i", i) U, and|i— j= 2

Note that if £ < 0, then { 1s set equal to 0.

Estimation: Let p, = (p., pz. Ps-...p,) denote the sample of
paths selected. Let s denote the set of distinct units in the
sample. By usmg the Horvitz-Thompson estimator
(Horvitz and Thompson, 1952), an unbiased estimator of
the population mean under path sampling is:
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PO O ) (5)
B =— —
Yo Ei%;{s Tisy

Let 1;, be the indicator function taking the value cne
if unit (i,)) is selected in the sample and O otherwise. Tt can
be written as:

I

[ ifunit(i, j)is included in the sample
b 0  otherwise

Therefore, [i,, can be written in the alternative form:

LI
i = 1 5 Yanles (&)

TCugn Ty
i, is the unbiased estimator for the population

mean L.
The variance of [i, is:

- [ 1 . o | M T M,
-l S5 -y Syttt |

AL Ty WO T T,
(7

and the estimator of this variance 1s:

P 1 1 1 2 1 1
Vi) :Tﬂc)z > = Pant > o m. [er¥en
s | Tan Map Gidsegyesl g T e

(L] # )
(8

The estimate of variance may be negative.

The spatial population of 4 rows and 6 column as
shown in Fig. 2 is considered. The population mean and
variance are 8.208 and 549.6, respectively. The objective
15 to estimate the population mean by using path
sampling. First, all possible paths are created. The number
of rows 1n this population s r = 4 and the number of
columns is ¢ = 6. Thus, the number ofall possible

paths is q = -1 = 4-1 = 3. In general, a path k in the
spatial setting population of r rows andc¢ columns
with starting unit (I, j*) is written as: P, = ((1, j*),
(2799, B2 7)o G 790, (e 521, § 20, (e 1), (eHL ),
(t1, 2),..., (ct1, ©), (k, ©), (g c-1), (k e2)..., (k 7*+1),
(-1, 7*41), k-2, 7*+1),..., (1, 3*+1) for k =1,2,3,...,
q=r-1.

Let the starting unit be (1, 3), so, j* = 3. Thus, we
have all possible paths with their labeled units as
follows:

Pr=((1,3), (1,2, (1, 1), (2, 1), (2.2), (2.3), (2,4, (2,5,
(2,6),(1,6),(1,5), (1, 4)

P,=((1,3), (2.3), (22, 2,1), 3, 1), 3, 2), 3.3), 3, 4),
(3,5),(3,6),(2,6),(2,5),(2,4),(1,4)

P,=((1,3), (2.3), (3.3), 3,2, 3, 1), (4 1), (,2), (43),
(4, 4),(4,5),(4,6),(3,6),(3,5),(3,4),(2,4), (1, 4))

Since the number of wnits belongmg to P, 1s
2¢+2(k-1), the number of umits belonging to P, 1s
2(6H2(1-1) =12 units, the number of units belonging to P,
15 2(61+2(2-1) = 14 units and the number of umnits
belonging to P, is 2(6)+2(3-1) = 16 units. Suppose the
number of sample paths 15 2, so, by using SRSWOR,
p = 2 sample paths are selected. There are 3 possible
samples which are py = (P, P;), pg = (Py, Ps) and ps = (P,
P.).

Pa= (PP, reduces to s, = {(1, 1), (1, 2),(1,3),(1,4),
(1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2. 6),
(3,1),(3,2),(3,3),(3,4),(3,5), (3, 6)}

Pe= (P, P3) reduces to s,= {(1,1),(1,2),(1,3),(1,4),
(1,5), (1.6), (2,1), (2,2), (2,3), (2.4), (2.5), (2.6),
(3.1), (3.2), (3,3), 3,4, (3,5), (3,6), (4. 1), (4.2),
(4,3),(4,4),(4,5),(4,6)}

Pa= (P, P;) reduces to s, = {(1,3), (1, 4),(2.1),(2,2),
(2,3), (2,4), (2,5), (2,6),(3,1),(3,2),(3,3), (3, 4),
(3,5),(3,6),(4,1),(4,2),(4,3), (4, 4), (4, 5), (4, 6)}

T 0 30 + £ 0 4 0
v »

0 0 12 35 0 0
v R
P v < d
o7 0 0 0 4 5
v R

0 0 0 0 0 0

Fig. 2: All possible paths of the spatial population for 4 rows and 6 columns with a y-value of each unit
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Next, the inclusion probabilities are calculated by the
formula Eq. 2. First, the mclusion probabilities for
units in column 3 and 4 (unit type 1) will be calculated. For
1=1,2,3 4and ) = 3 and 4, we have:

1-2 [2721

Ty =1- 2 =1-0=1=m, TM,,;=1- 2 =1-0=1=m
A 23 3
)

=1- f} :1—0:1:1’1(3_,,j nm,:l— 2 =1- =§=ﬂ

Next, the mclusion probabilities for units not
column 3 and 4 and not in the first row or last row (unit
type 2) will be calculated. For1=2,3and =1, 2,5, &

Tz

2

Then:

3-2

Then:
3-1
2 1 2
Ty =1- {3 =1- 3737 Tz =Ts = Mg =Ty =T = Mes =Ty
2}

The inclusion probabilities are shown in Fig. 3.
Estimates of the mean for all possible samples are shown
in Table 1. It can be seen that [i  is an unbiased estimator
since its bias is zero.

Recall that p,, = (P, P,) reduce to s, = {(1,1), (1,2),
(1,3), (1,4, (1.5), (1,6), (21), (2,2),(2,3),(2,4),(2,5),
(2,6),(3,1),(3,2),(3,3). (3, D, (3,5), (3,6)} corresponding
toy=148,7,30,24,6,5,0,10,112,35,5,8,7,7,32,0,0, 5.
By using Eq. 5:

Vg Yap_ L | ¥y Yoo

Yoo |_ 1] 8 0 5
h,=— ot =ttt
rCiiEn Mapy  HE)| Ty Mg Mg | 2402/3 2/3 1

_20 8.375
24

Similarly, the estimate of variance is calculated using
Eq 8.

Table 1: Estimates of the mean and variance estimator for all possible

2 samples
T =1- =1-0=1= =1 =1 =1 = =1 =1
12,1} 3 T£(2,2) 12,51 [2,6) 13,1 T.£(3,2] 3,5) (3,81 Sample ﬁm Samp]e S]Ze 'I\‘; (pm)
: pu = (P, P2) 8.375 18.00 0.083
pa =Py, P5) 8.375 24.00 0.083
: : : i s . = P. 7.875 20.00 0.000
Fmally, the inclusion probabilities for units mn the first ijfean(Pz’ ) 8208 o7 0.056
row and the last row but not in column 3 or 4 (unit type 3) Bias 0.000 0.000
are calculated. Fori=1and4andj=1,2,5,6: Variance 0.056
< A A < A
2/3 2/3 1 1 2/3 2/3
| 1 1 1 1 I
P v P g
|7 1 1 1 1 1 4 1
2/3 2/3 2/3 2/3 2/3 2/3

Fig. 3: The inclusion probabilities of the population of 4 rows and 6 columns
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SIMULATION STUDY

Rare and non-rare population data are used n a
simulation to examine the performance of path sampling
compared to a comparable sampling design which in this
research are SRSWOR and cluster sampling. The
simulation consists of 1000 iterations. The formula used
to estimate the variance 1s:

o 1 wy o g
)~ 5o T 2 @)

where, [ is the value for the relevant estimator for
sample 1 and p is the average of the [i (Dryver and
Thompson, 2005).

Simulation study for rare population: The authors used
blue-winged teal data (Smith et al., 1995) m Fig. 4 for part
of the simulation study, as it 15 a rare population. In
cluster sampling, let a cluster be an entire column,
consisting of 10 units, as shown in Fig. 4. This population
data have high varation among clusters with CV of 4.26.
The expected sample size will be denoted E(v) and the
sample size used in the other designs was set equal the
ceiling of the E(v) for path sampling. For cluster sampling,
the number of clusters sampled was set equal to the
ceiling of B In SRSWOR, the sample size was set equal

to E(v) in Sider to compare it to path sampling.

Table 2: Results from the simulations on blue-winged teal data

The results from the simulations are shown in
Table 2. From these results, for starting unit (1, 1) and
(1, 10), path sampling was more efficient than cluster
sampling since the relative efficiency was greater than 1.
Noticeably, the y-values in column 17, 18 and 19 were
higher than others, so, there was high variation among the
clusters in this population. This made cluster sampling
less efficient. However, path sampling was less efficient
than SRSWOR simnce the relative efficiency was less than
1. Notice that when the starting umt 1s in a high-valued
column which is unit (1,17), path sampling was more
efficient than SRSWOR since the relative efficiency was
greater than 1 and much more efficient than cluster
sampling since the relative efficiency was greater than 4.

Simulation study for non-rare population: Two simulated
data were considered. First, we used the simulated data in
Fig. 5. Each unit was Poisson distributed with a mean of
50. To compare path sampling to cluster sampling, let a
cluster be a cluster of an entire column. In this population,
the CV among the clusters 1s 0.04. The sinulation results
are shown in Table 3.

From the simulation results in Table 3, it can be seen
that path sampling was less efficient than both cluster
sampling and SRSWOR because the relative efficiency
was less than 1. Noticeably, there was a small variation of
y-values, so there was low variation among clusters
(CV among clusters 1s 0.04) 1 this population. This makes
cluster sampling more efficient.

() (1.1) (1,10) (117
P E () m, ., a,1m (1,17 () (i) R.Ecls R.E.srs R.Ecls REsrs RFE.cls R.E.srs
1 48 50 (5) 10977.94 10753.86 278391 137713 7021.76 1.25 0.64 1.28 0.65 4.95 2.52
2 83.33 90 (9 441587  4115.08  579.54 5525.01 331264 1.25 0.75 1.34 0.81 9.53 572
3 113 120 (12) 214611 210584 96.29 302343 1691.70 141 0.79 1.44 0.80 31.40 17.57
4 138 140(14) 1072.83 110251 937 1960.50  1015.52 1.83 0.95 1.78 0.92 209.23 108.38
5 158.6 160 (16) 521.31 541.39 0.25 1232.52 623476 236 1.20 2.28 1.15 4930.08  2493.90

The number in parentheses is the number of clusters selected in cluster sampling, m. is the No. of units in a cluster sample, * means that such a starting unit
is on a high y-value column j* or has high y-value column j*+1. R.E.cls = % (i, )/ (i), R.E.srs =¥ (. /% (i)

clsl cls2 cls3 cls4 cls5 cls6 cls7 cls8 cls9 clsl0 cls1l cls12 cls13 clsl4 cls15 cls16 cls17 cls18 cls19 cls20
0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 of 20 4 2] 12 0 0 0 0 0f 10| 103 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0| 1507144 1 0
0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 6[6339 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of 14| 122 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 114 60
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

Fig. 4: Clusters mn blue-winged teal data
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clsl cls2 cls3 clsd4 cls5 cls6 cls7 cls8 cls9 cls10 clsll cls12 cls13 cls14 cls15 cls16 ¢ls17 cls18 cls19 ¢ls20

43( 51| 40| 40| 55| 56| 49| 43| 61| 61

49 391 38| 42| s3[ 61] S57[ S0 48] 47

47( 51 51) 53| 51| 43| 60| 55[ 50| 60

611 49] 56| 50| 57| 55 59| 49| 40| 47

60 52| 46| 49| 54| S1| 58| 45| 48| 44

43 54] 61| 50f 63| 50| S57[ 45 47] 50

551 56| SI| 51 47 38| 55[ 50| 51| 51

61| 42] 48] 35| 50| 41 67| 48| 47| 48

49 55 55| 44| 391 61| 47| 54 60| 55

67| 43| 41| 50| 52| S5 44| 45| 54 54

60[ 50 49| 46| 57| 49| 57| 49| 44| 56

37| 44] 47| 47| 46| 48[ 46| 42| 29| 52

53| 57| 35| 52 43] S1| 49 65| 54| 51

55| 52] 55| 68| 39| 44 39| 48| 68| 56

551 51| 56| 34 501 57| 49 58| 52| 64

41( 491 47] el| 52 50| 55 57 41| 47

SI| 62| 41| 45 41] 55| 43 51| 46| 33

49 54| 56| 41 sS1| 46] 61 55 43] 35

470 47( 41 46 471 56| 47| 43| 61| 44

431 591 39 52 46| 37[ 48] 59| 49| o6l

Fig. 5: Simulated data, each unit is Poisson distributed with a mean of 50 with CV among clusters of 0.04

clsl

cls2 cls3 cls4 cls5 cls6 cls7 cls8 cls9 clsl0 cls1l cls12 cls13 cls14cls15 cls16 cls17 cls18 cls19 cls20

43 SI1| 40| 40f 55[ 556] 49| 43 61]1610

49 39 38| 42| 5531 61| 57| 50| 48 47

47 SIl 51 53 51| 6431 60| 55[ 50 S5

611 49 56| 50 657| 55 59| 49| 40| 47

60 52| 46| 49] 54| 651 58 45 48[1404

43] 54) 61| 50| 563 S0[ 57[ 45| 47| 50

55 56| S1| 51| 47| 638 55| 50 54| 55

61| 42| 48| 35| 689] 41| 67| 48] 47| 48

49 55| 55| 44| 39| 561 47 54 60| 67

67] 43| 41| 50| 552] SS[ 44] 45| 54| 54

60 50| 49| 46| 57| 665 57| 49 44| 155

37| 44| 47| 47| 546| 48| 46 42| 29[ 52

53 57| 35 52 43| 651| 49| 65| 54]1501

S5 52| 55| 68 639 44| 39 48 68 56

55| 51| 56[ 34| 50 457[ 49| 58| 52| 64

41] 49| 47| 61| 457( 50 55 57| 41| 47
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49] 541 56| 41| 551 46l 61 55| 43| 35

47 47] 41| 46| 47] 356 47) 43| 1] 133

43] 59] 39 52| 446 37[ 48[ 59| 49| el

Fig. 6: Simulated data with CV among clusters of 1.46

Table 3: Results firom the simulation on a non-rare population with low CV among clusters

% (o) (1,10) (1,17
P E () m, 1,10) 1,17 (i) () R.E. cls R.E. srs R.E. cls R.E. sis
1 48 50(5) 89.38 86.18 0.74 0.81 0.0083 0.0091 0.0086 0.0094
2 83.33 20 (9) 77.70 65.57 0.29 031 0.0037 0.0040 0.0044 0.0047
3 113 120 (12) 54.57 53.37 0.16 0.20 0.0029 0.0034 0.0030 0.0040
4 138 140(14) 44.92 49.11 0.10 0.12 0.0022 0.0027 0.0020 0.0024
5 158.6 160 (16) 34.08 31.24 0.06 0.07 0.0018 0.0021 0.0019 0.0022
Table 4: Results from simulation on non-rare population with high CV among clusters

¥ () 1,2) 1,5* 1, 10)* (1,15)* 1,17)
pE{L) m (1,2) (1,5* (1,100 {1,15)* (1,17) % (h) % (i) REds REsrs RE.ds REsrs RE.cds REss RE.cds REsrs REcds R.E.srs
148 50 (5) 1125.40 797.54 29437 802.52 101510 5108.45 869.33 4.54 0.77 641 1.09 1735 295 637 108 5.03 0.86
28333909 652.52 561.49 280.53 504.01 628.53 1955.48 403.27 2.99 0.62 3.48 0.72 6.97 144 3.88 0.80 3.11 0.64
3113 120(12) 491.86 374.83 219.67 374.17 48441 1087.56 20643 2.21 042 290 0.55 495 094 291 055 225 0.43
4138 140 (14) 350.09 289.09 170.70 276.28 356.62 722.55 11466 2.06 033 2350 0.40 423 067 262 042 2.03 0.32
5 158.6 160 (16) 248.91 188.63 129.05 203.40 250.73 43094 73.01 1.73 0.29  2.28 0.39 334 057 212 036 1.72 0.29

The number in parentheses is the number of clusters selected in cluster sampling, m, is the No. of units in a cluster sample, * means that such a starting unit is on a high
y-value column j* or has high y-value column j*+1. R.E.cls =% (ji..)/¥ (i), R.E.srs =% (/% (i)

Next, simulated data, as shown in Fig. 6 is used. All
units were the same as the population data in Fig. 5,
except column 6, 10 and 15. The y-values in these 3
columns were replaced with a higher value. To compare
path sampling with cluster sampling, let a cluster be a
cluster of a column This population data had high
variation among the clusters with CV among clusters of
1.46. The simulation results are shown in Table 4.

According to the simulation results in Table 4, for
starting unit (1, 2) and (1, 17), path sampling was more
efficient than cluster sampling because the relative
efficiency was greater than 1. Noticeably, the y-values in
column 6, 10 and 15 were very higher than the others, so
there was lugh variation among clusters (CV of 1.46) in
this population. This made cluster sampling less efficient.
Notice that when the starting umt 1s in a ligh-valued
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column which are unit (1, 5), (1, 10) and (1, 15), path
sampling was much more efficient than cluster sampling
since the relative efficiency was greater than 2.

For starting umit (1, 2) and (1, 17), path sampling was
less efficient than SRSWOR since the relative efficiency
was less than 1 for any p. However, for the starting unit in
a high-valued column which are unit (1, 5), (1, 10) and
(1, 15), path sampling was more efficient than SRSWOR
for p = 1 since the relative efficiency was greater than 1
but it was less efficient than SRSWOR for p>2 because
the relative efficiency was less than 1.

DISCUSSION

Path sampling can be very cost-effective for sampling
many nits. This 1s true when cost 13 mamly a function of
distance travelled, as the number of units sampled equals
the number of umts travelled. In path sampling, the
researcher can sample all of the consecutive units in a
path traversed during the sampling. On the other hand, for
cluster sampling, the cost of traveling between
clusters will be higher the more widespread the sample
(Hansen et al, 1953).
constraints it is possible that a researcher could sample
more units with path sampling, thus giving it an added

In sitvations with budget

advantage m this respect. Unfortunately, for path
sampling the number of units in the final sample is random
and can vary a lot as a result of the number of units in
each path vary. Therefore, the expense of sampling when
cost 13 a function of distance travelled would also be
random, possibly creating budget problems. However, the
expected sample size in path sampling can be obtained as
with adaptive cluster sampling (Thompson, 1990). Tt is the
sum of the inclusion probabilities.

As a result of the way m which the paths were
formed, path sampling is a type of unequal probability
sampling and the authors used the Horvitz-Thompson
estimator for estimation of the population mean. Similarly
in path sampling, much of the literature has applied the
Horvitz-Thompson estimator (Bumbaum and Sirken, 1965;
Thompson, 1990; Nafiu and Adewara, 2007) because
of the unequal probability of selection. For the
Horvitz-Thompson estimator, it 1s desirable to have the
y-values proportional to the probability of selection in
order to obtain a relatively small variance which 1s
observed by Horvitz and Thompson (1952). This limitation
1s clear when comparing path sampling to simple random
sampling in the simulation results in Table 2, 3 and 4. Tf
there is an auxiliary variable correlated with the variable of
mnterest it 13 desirable, when possible, to select a starting

and ending point for the paths which would have high
y-value umts having a high probability of selection and
vice-versa for low-valued units.

In addition, when the CV from cluster to cluster in
cluster sampling 1s high, then path sampling may be a
viable alternative to cluster sampling, as can be seen
in Table 2 and 4. Comespondingly, Chih (2011)
mentioned that cluster sampling is less efficient when the
between-cluster variability is large.

Path sampling should be implemented when two
conditions are met-when the cost of the sampling is
mainly a function of distance travelled and when it is
believed that the y-values are positively correlated with
the probability of selection. It is known that the ratio
estimator 1s often more precision (Dryver and Chao, 2007).
Therefore, if there 15 an auxiliary varable known to be
correlated with the variable of interest, then perhaps a
ratio estimator for path sampling should be considered.
Finally, for rare and lidden populations, further research
should be camried out that investigates combining
adaptive cluster sampling and path sampling.

CONCLUSION

In this study, sampling in a spatial population was
studied. Sampling a spatial population by applymng
previous sampling designs, such as simple random
sampling and cluster sampling, was inconvenient because
the researcher had to travel from place to place to observe
every umit in a sample. Thus, path sampling was proposed
and compared to simple random sampling and cluster
sampling. Path sampling
cost-effective but less efficient m some circumstances.
According to the simulation results for a rare population
and a non-rare population with high variation of y-values
among clusters, path sampling is more efficient than
cluster sampling but less efficient than SRSWOR.
However, for a non-rare population with a low variation of
y-values among clusters, path sampling 15 less efficient
than cluster sampling and SRSWOR. An illustrative
example was offered by applymg path sampling to a
spatial population of 4 rows and 6 columns. The
calculation of the estimate of the mean and variance was

is more convenient and

also shown. Finally, all possible paths in this study are
created in a certain way, so that, inclusion probabilities
and joint inclusion probabilities can be obtained and the
Horvitz-Thompson estimator can be applied Another
form of path could be created that is more convenient and
cost-effective. Moreover, could be
created to improve the precision. In a rare and clustered
population, adaptive path sampling could be of interest.

other estimators
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