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Abstract: Tn this study, approximate and/or exact analytical solutions of the Retarded Delay Differential Systems
(RDDSs) are obtained by Telescoping Decomposition Method (TDM). TDM is a modified form of the
well-known Adomian Decomposition Method (ADM). The main features of the TDM are that it deforms a
difficult problem into a set of problems which are easier to solve and avoids calculating the Adomian

polynomials. The analytical approximations with high accuracy are obtained using the TDM which agree well
with the numerical results. Some illustrative linear and nonlinear experiments are given to indicate the validity

and great potential of the proposed method for solving RDDSs.
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INTRODUCTION

Retarded delay differential systems with proportional
delays represent a particular class of delay differential
systems. Such systems play an important role in the
mathematical modeling of real world phenomena such as
physical problems, circuit analysis, computer-aided
design, power systems, simulation of mechanical systems
and more general optimal control problems; thus, they
have attracted the attention of numerical analysts
(Hale and Lunel, 1993; Taiwo and Odetunde, 2010,
Hafshejami et al, 2011; Shieh et al, 2011,
Vanam et al., 2011a;, Vanam and Aminataei, 2009, 2010).

A RDDS is presented as follows (Bellen and
Zennaro, 2003):
UE)=AX)UGE)+B(x)U, (x)+F(x), a<x <b, (1)
Ux)="F(x), x =a
Where:

UG) =[ugls, ws) o] e k=01, ,m (2)

is the state vector and:
U, 0 =[0g(ety G0, W (G Ut D] (3)
such that {a, (x)<b}™, ., are delay functions; A(x) and

B(x) are (m+1)-dimensional matrices which their entries are
complex functions of x. Alsor:

Wi =) W), el wme k=01, m (D
B0 =[x L] GeC k=01 m  (5)

represent the imitial vector fimection and known vector
function, respectively.

Obviously, most of these systems cannot be solved
exactly. It 1s therefore necessary to design efficient
numerical methods to approximate their solutions.
TDM as a modification of ADM is considered as a
efficient method for solving RDDSs. The ADM was
first mtroduced by Adomian (1968, 1988) and has
been used to integrate various systems of functional
equations (Adomian, 1988). Recently, many literatures
have been developed for the application of ADM
(Adomian, 1988, 1994; Adomian and Rach, 1992
Chowdhury, 2011; Jaradat, 2008, Kooch and Abadyan,
2011, 2012). Several modifications of ADM have been
presented various fields of applied mathematics and
physics (Hosseiu, 2006, Wazwaz, 1999a, b, 2000, 2002;
Vanami et al., 2011b).

The difficult parts of ADM is to calculate the
Adomian polynomials. There are large number of literature
to present an efficient algorithm for computing Adomian
polynomials (Wazwaz and El-Sayed, 2001). The most
popular one is the formula obtained bu
(1994, 1988) as:

Adomian

_1d (&
A, = f[ZA u]] (6)

=0 [
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where, A, denotes the Adomian polynomial of degree n,
u=3"u, 15 the exact solution of the problem and f(u) 15
the nonlinear term in the equation. Tt should b noted that
the calculation of the Adomian polynomials 13 too
difficult for large n and Eq. 6 can not be applied if f is a
function of more than one variable, such as = f(u, u’)
In addition, the ADM may diverge for some problems
with special conditions (Hosseini and Nasabzadeh,
2006). Hence, to remove this difficulty we proposed a
new and efficient method (TDM) for solving desired
RDDS.

APPLICATION OF TDM ON RDDSs
The structure of TDM 1s as follows. Let us the

problem (1) 1s given. So, we can consider its solution in
the following form:

Uix) = U, )+ U, )+ U, () + ...+ U, (x) (7)
Where:

0,60 =[ug, %), w00 w8, =01 n (&)

have to be determined sequentially upon the following
algorithm:

U,(x)="P(a)+ jD”F(t)dt,
U,(0) = [ [A®U, () + BOU (0] de,
% ! ! %
Uy =] {A(t)ZUk 0+ B(t)ZUak(t)} dt - [TAOU® + BOU ()] dt
k=0 k=0

x 2 2 e 1 1
Us(x) =] {A(t)éuk W+ B(t)éu,k(t)} d-[ {A O3CE B(t);mk(t)} dt,

, n-1 n-l x n-2 2
U, (x)= J'D {A(t)ZUk(t) +BHY U, (t)i| dt - jﬂ {A(t)ZUk(t) +BOY T, (t)} dt,
k=0 =0 k=0 k=0

@)

and so on.
Adding the above equations, we obtain:

n ' ' n-l -l
U=, (x) = (o) + jDF(t) dt+ jﬂ |:A(t)ZUk(t) +B(t)ZUak(t):| dt
= k=0 =
(10)

This method is called TDM which is useful for
different problems in finite, infimte, regular and uregular
domams. The convergency and more details of thus
method are given (Al-Refai et al., 2008).

ILLUSTRATIVE NUMERICAL EXPERIMENTS

Here, three experiments of RDDSs are given to
illustrate the efficiency and validity of the method. All
experiments are considered on the terval [0, 1]. To
simplify the computations, we have used Taylor series
expansion of each iteration. The computations associated
with the experiments discussed below were performed in
Maple 14 on a PC with a CPU of 2.4 GHz.

Experiment 1: Consider the RDDS (1) with the following
conditions:

A:[l X} B:F O} U, = U@ F(x){ e _x} U(mzm
-2 —xe"-e3
(11)

The exact solution is U(x) = [, e7F].

We have solved this problem using TDM withn = 4.
The sequence of approximate solution is obtained as
follows:

3 7 25
Vg (x)=1- xfzx +£ 37ﬁx4+0( )

1o 215 191,
v (X)=2X——X —x +0
mlx)= T s (=),

3 9 381
Vuz(X):EXz +EX3 - EX4 +O(x5),

5 T35
V,B(K):gx3 +1536 4+0( )

Vi (%) :%)ﬁ + O(XS),

2., 37, 13 5
v(x)=1-3x+—x"——x ——x"+0(x" ),
wlx) 3 54 324 (=)
3., 7., 4259 5
v (X =2x——x"——x —-——x" +0(x7),
nle)= 27 81 11664 (')

4, 1,5 2971 , .
Vlz(x):*x +§X *34992)( +0(X ),

_40 5, 78S .
Vis ) = 81 Tom ™ +o(xt).

vy ()=

2187X +O(X5).

Hence, we get:

3 4
ug(x)= 1+x+—+—+x—+0(x5)
16 (13)
2 X3 X4
u(x)=1- x+77?+£ 0( )

Therefore, we conclude that:

2 3 4 n
wp(x)=ltx+ =+ =+ o+ ro(x™),
ETRETIMT ! (14)
2 X3 4 n "
u(x)=1- x+?—?+z+ I | +0( )
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This has the closed form Ui(x) = [¢*, e *|" which is the
exact solution of the problem. To show the fastness of the
method, the runtime of the proposed algorithm is also
computed. Table 1 shows the results including the
maximum absolute error and runtime of the method for
different n.

Table 1 illustrates that the solutions of TDM are in
good agreement with the exact solution. Also, the runtime

of the proposed algorithm illustrate the method as a fast
and powerful tool.

Experiment 2: Consider the RDDS (1) with the following

conditions:
x e x° x x 1 ug(x) 0
A=le™ 1 1|, B=—[1 x x| Uyx)=|ux"y|, UO)=|1
x x % x x 1 uz(x4) 1

. . 3

cos(x) — xsin(x) — e — x’cos(x) + xsin{x?) + x%e* +cos(x*)
. . 3

F(x)=| —e sin(x) — cos(x}+ sin{x?) + xe* +x’cos(x")

. . . 3
—sin(x) — xsin{x)— x%e* — x"cos(x )+ xsin(x?) + x2e* + cos(x’)

(15)

The exact solution 1s U(x) = [sin(x), &7, cos(x)]".
We have solved this problem using TDM withn = 6.

The sequence of approximate solution is obtained as
follows:

7% x* n = 11x°

Vuu(x):X*XE*T*E 120 o0 +0(x7),
Vm(x):%_;%_%‘*zgz);ﬁ‘*’O(X?)s
VDZ(X)=X2+23i3 %Jr%—lzz);ﬁJrO(x?),
VDE(X):%E*%JFi—f*z;;{ﬁ*O(X?L
vua(x):x—;+%+%+0(x7),
vm(x):iﬂlX6 +0E),

30 180

7x*
Vos(X)Zﬁ‘*'O(X?),
7x° x' 23x
Vm(x)=1—x+i—x—+7x +X—+O(x7),
6 12 120 180

3 7! +17:»15 _19%°

v (x)=2x——+— +0 x7,
ulx) 24 40 720 =)
2 4 3 )
X' 29x X 7
vpx)=———- -——+0(x"),
2 () 2 4 60 240 (=)
2 x' o3 x° 7
VR = —-—- +—+0(x")
15(%) 2 12 120 40 (=)
4 5 ]
X 3x 11x 1
vy x)=—+—- +0(x"),
) 6 40 360 (=)
TX x° 7
v (X)= +—+0(x"),
15(%) oo {x')
Vi (%) —X6+0(x7)
16 20

2 x7 sx' % 53x° 7
Vylx)=l+x-———-"——-— o(x"),
w ) 2 3 24 15 240 (<)

3 4 5 é

X b4 TX 31x b

vy}l =—x+—-—-—+ +0(x" ),
2 (%) 3 2 30 T2 ')

4 5 ]

x" % 85x El
v (x)= +—- +01x"),
2 T (<)

4 5 é

X 3x 11x 7 (16)
Vu({x)=—+— Oix'),
=TT S (')

7x° 7
Vyu(x)=—+—+0(x"),

u= o+ g O
[
X 7
Vi (X)=—+0(x" ),
s0=—2 (x7)
vzﬁ(x):OJrO(x?),
Thus, we obtaimn:

1 3 1 3 7
n(x)=x-—x +—x +0(x"),
o) 6 120 (')

2 é
ul(x)=1+x+X—+,,,+X—+O(x7), (17)
2 720
1 45,1 4 1 5 7
u(x)=1l-—x"+—x"——x +0(x
T o T (')
Therefore, we conclude that:
uD(x)=x—ix3+lX5+,,,+ =1 x40 (x29)
3! 5! (Zn +1)
2 % x x" . 18
ul(x)=1+x+—+—+—+,,,+—+0(x“*), (1%)
2t 30 4t n!
1 1 -1)
uD(x)=1——x2+—x4+_.+( ) X+ o),
ETT (2n)!

This has the closed form U(x) = [sin(x), €, cos(x)]",
which is the exact solution of the problem. The runtime of
the method is also computed for different n to obtain a
suitable approximation. Table 2 shows the results
including the maximum absolute error and runtime of the
method for different n.

The results also confirm the method as a fast method.
Therefore, using the proposed method is preferred to
facilitate the computations as shown in Table 2.

Table 1: Maximum absolute error and runtime of the method for different n
of experiment 1

Max absolute error

Run time
n Uy () 1w (x) (sec)
6 2.26%1074 1.71x1074 0.094
10 2.73%x107% 2.31x107% 0.109
14 8.15x10713 7.19x10713 0.218
18 1.00x1075 1.00x10716 0.3%0

Table 2: Maximum absohite error and nntime of the method for different n
of experiment 2

Max absolute error

Run time
n 1y (x) 0 (x) h(x) (sec)
& 1.95x107* 2.26x107* 2.45%107° 0.889
10 2.48%107% 2.73x10°% 2.07x107° 2.589
14 7.61x1071 8.15x1071 4761071 4.680
18 1.00x1071 1.00>x107Y 1.00x1071 7.613
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Experiment 3: Consider the RDDS (1) with the following

conditions:
.
UDE
1111 x 0
l]l_
AB1111U() 3 U(O)l
—p= , U lx)— . -
1111 x 0
uz—
1111 4 1
X
s

- a
—sinh(x) - sin(x) - & sinh [Ej - cosh[Ej —sin [EJ —e®

2 3 4
2
—cosh(z) - sinx) — & sinh [gj — cosh (%j - sin [%] —e®
Fx)= \

c0s(x) - sinh(x) — cosh(x) — sin(x) - & sinh [gj — cosh [?]— sin[gj— o

il
J_eﬂj

(19)

ESE

E
3

er"2 — sinh(x) — cosh(x) - sin(x) - e"2 - smh[gj— cosh[ J - sm[

The exact solution 1s U(x) = [sinh(x), cosh(x),
sin(x), e*T".

We have solved this problem using TDM withn = 7.
The s following results are obtained:

1 3 1 5 1 7 9
u{x)=x+-—-x"+—x"+ X +0(x},
nl) 6 120 5040 (')

1 1 1
ul(X)=1+—x2 +—xt+—x* +O(x8),

27 24 720 (20)
12,1 5 1 s

u(x)=x——x +—x"—-——x" +0(x"),

2x) 6 1200 5040 (')

1 1
ug{x)=1+ x* +EX4+EX6 +0(xg)

Therefore, we conclude that:

1 g O(inﬁ),
(Zn+1)

1
uu(x)=x+;x3 + .+

1 1 1
wE)=1+—x +—x"+.. .+ x2“+0(x2“+2)
! 2

2! ’ 21)
= 1 1 (_l)n in-+H N+
uZ(X)—X—EXE‘+§xj+,,,+(zn_'_l)!x2 1+O(X2 3),

1 1 1
ux)=1+x" + —xt+ —xf L —x™ +0(x2“+2)
21 3! n!

This has the closed form Uix) = [sinh(x), cosh(x),
sin(x) €*|" which is the exact solution of the problem.
Table 3 including  the
maximum absolute error and runtime of the method for

shows the  results
different n.

The high accuracy of the method can be observed
again. Therefore, we prefer the proposed method for
solving RDDSs.

Table 3: Maximum absolute error and runtime of the method for different n of
experiment 3

Max absolute error

Run time
n uy(x) w(x) w(x) u;(x) (sec)
10 2.52%10°° 2.09x107° 2.48x107° 1.61x107° 0.250
200 1.00x107  1.00x107" 1.00x107% 2.73x107° 2.543
30 1.00x107%  1.00x107% 1.00x107% 5.10x107* 16.786
CONCLUSION

This study has presented a reliable algorithm based
onthe TDM to solve RDDSs. Some experiments are given
to illustrate the validity and accuracy of the proposed
method. The main feature of the TDM 1is to avoid
calculating the Adomian polynomials. Furthermore, this
method yields the desired accuracy only in a few terms in
a series form of the exact solution. The method is also
quite straightforward to write computer code. The
reliability of TDM and the reduction in computations give
TDM a wider applicability.
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