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Numerical Solution of Fractional Ordinary Differential Equations
using a Multiquadric Approximation Scheme
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Department of Mathematics, [slamic Azad University, Boroujen Branch,
P.O. Box 88715/141, Boroujen, Iran

Absratet: In this study, the aim was to present a Multiquadric (MQ) approximation scheme on the numerical
solution of Fractional Ordinary Differential Equations (FODEs) using extensively in engineering. The properties
of the proposed MQ approximation scheme and its advantages which include using data points in arbitrary
locations with arbitrary ordering are presented. Comparing between the numerical results obtained from our
method and the other methods confirms the good accuracy of the presented scheme. Also, we present some
experiments wherein the numerical results show that the method works excellently, even where the data points

are scattered.
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INTRODUCTION

The theory of fractional calculus was first raised n
the year 1695 by Marquis de L” Hopital and from now on
many studies were done and many important books were
published in this field wherein we can point out to the
study of Oldham and Spanier (1974), Miller and Ross
(1993), Samko et al. (1993) and Podlubny (1999). Most of
the scientific problems and phenomena are modeled by
Fractional Ordinary Differential Equations (FODEs) and
Fractional Partial Differential Equations (FPDEs). For
mstance; mn mathematical physics (Podlubny, 1999), in
fluid and continuum mechanics (Carpinteri and Mainardi,
1997), coloured noises (Sun ef al, 1984), biology,
chemistry, acoustics and psychology (Ahmad and
El-Khazali, 2007). Some of FPDEs have been studied and
solved including the classic Fractional PDEs (Vanani and
Aminataei, 2011a), the KdV  equation
(Momani, 2005) and linear and nonlinear space and time-
fractional diffusion-wave equation (Momani ef al., 2007,
Tafari and Seifi, 2009).

In most cases, these problems do not admit analytical
solution, so these equations should be solved using
special techniques. In the last decade, several
computational methods have been applied to solve FDEs,
prominent among which are the Homotopy Perturbation
Method (HPM) (Momani and Odibat, 2007a; Jafari and
Seifl, 2009), the Adomian Decomposition Method (ADM)
(El-Sayed and Gaber, 2006, Momani and Odibat, 2006), the
Variational Tteration Method (VIM) (Momani and Odibat,

fractional

2007b), the Generalized Differential Transformation
Method (GDTM) (Momani and Odibat, 2008) and the
Fractional Difference Method (FDM) (Momami and
Odibat, 2007a; Ghorbani, 2008).

Out of these methods, we would like to present a
simple and efficient method for solving FODEs. The MQ
approximation scheme 1s an useful method for the
numerical solution of ordmary and partial differential
equations (ODEs and PDEs). Tt is a grid-free spatial
approximation scheme that converges exponentially for
the spatial terms of ODEs and PDEs.

The MQ approximation scheme was first introduced
by Hardy (1971) who successfully applied this method to
approximate surfaces and bodies from field data. Hardy
(1990) has written a detailed review article summarizing its
explosive growth since it was first introduced. In 1972,
Franke (1982) published a detailed comparison of 29
different scattered data schemes for analytic problems. Of
all the techmques tested, he concluded that MOQ
performed the best in accuracy, visual appeal and ease of
implementation, even against various finite element
schemes. To the best of our knowledge, this is the first
demonstration of the application of the MQ approximation
scheme to FODE:s.

BASIC DEFINITIONS OF THE
FRACTIONAL CALCULUS

Here, we state some preliminaries and definitions of
fractional calculus (Podlubny, 1999):
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Definition 1: A real function u (x), x>0 is said to be in the
space C,, peR, if there exists a real number p>p such that
u(x)=x (x), where v(x)eC (0, ) and it is said to be in the
space C,” iff u™ (x)eC,, meN.

Definition 2: The Riemann--Liouville fractional integral
operator of order w>0, of a function u (x)eC,, p=-1, is
defined as:

Fui) = ﬁjﬂ G- O 0dt, > 0, x> 0, Pu(x) = u(x)

where, I' 15 the Gamma function. Some of the most
important properties of operator I* for u (x)eC,, p=-1, a,
Bz0and y=-1, are as follows:

o "G =T1"Pux
T TFu(x) =TPI"u(x)
Ty+1)
Io+v+1)

» ™

Y = a+y

Definition 3: The fractional derivative of u (x) in the
Caputo’s sense 13 defined as:

1
T'(m—c)

(1)

DMuG)=I""D™u(x)=

|, vt @

where, m-1<¢<m, meN, x>0, u (x)eC*,.
MQ APPROXTMATION SCHEME

The basic MQ approximation scheme assumes that
any function can be expanded as a finite series of upper
hyperboloids that are written as follows:

(2)

N
u(x)=Yah(x-x), xeR
=

where, N 1s the total number of data centers under
consideration and:

3)

1
hx-x)=@x-x)"+R), j=1,2, N

(x-x;)* is the square of Euclidean distances in R and R*=0
is an input shape parameter. Note that, the basis function
h, which is a type of spline approximation, is continuously
differentiable. The expansion coefficients a are found by
solving a set of full linear equations, which are written as
follows:

(“4)

T
u(x)= dah(x —x;),i=1,2, N
j=1
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Zerroukut et al. (1998) found that a constant shape
parameter (R’) achieves better accuracy. Mai-Duy and
Tran-Cong (2001) have developed new methods based on
Radial Basis Function Networks (RBFNs) to approximate
both functions and their first and higher derivatives. The
Direct RBFN (DRBFN) and Indirect RBFN (IRBFN)
methods have been studied and it has been found that the
IRBFN methods yield consistently better results for both
functions and their derivatives. Recently, Aminataer and
Mazarei (2005) stated that, in the numerical solution of
elliptic PDEs using DRBFN and TRBFN methods, the
IRBFN method is more accurate than other methods with
very small error. They have shown that, especially, on
one-dimensional equations, IRBFN method is more
accurate than DRBFN  method.  Furthermore,
Aminataei and Mazarei (2008) used the DRBFN and
IRBFN methods on the polar coordinate and have
achieved better accuracy.

Micchelli (1986) proved that MQ schemes belong to
a class of conditionally positive definite RBFNs. He
showed that equation 1s always solvable for distinct
pomts. Madych and Nelson (1990) proved that MQ
interpolation always produces a minimal semi-norm error
and that the MQ interpolant and derivative estimates
converge exponentially as the density of data centers
ncreases.

In contrast, the MQ interpolant 1s continuously
differentiable over the entire domam of data centers and
the spatial derivative approximations were found to be
excellent, especially in very steep gradient regions where
traditional methods fail. This ability to approximate spatial
derivatives 1s due in large part to a slight modification of
the original MQ scheme that permits the shape parameter
to vary with the basis function.

Instead of using the constant shape parameter
defined in Eq. 3, we have used varable shape parameters
(Kansa, 1990a, b, Vanani and Aminataei, 2009, 2008,
2011b) as follows:

1
hix—x)=((x-x) +R})?,j=12,..N (5
3 N
Rf:Rfmn[ig‘”J Jj=12.N ©)
and:
R%,.>0

R’,.. and R’ are two input parameters chosen so
that the following ratio is in the given range:

R2
—m =10 to 10°

Tain

7
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Madych (1992) has proven that very large values of
a shape parameter are desirable i certain circumstances.
Equation 5 1s one way to have at least one very large
value of a shape parameter without incurring the onset of
severe ill-conditioned problems.

Now, in order to apply the MQ approximation scheme
for solving FODESs, let us consider a FODE in the form:

D™ (x)+Lu (x) = f (x), Ozx<b ()

u¥(0) = A, k=0,1,..., [¢] (9)
where, I, is the differential operator, D" is the fractional
differential operator of order o« that operates on the
mterior and f: [0, b]~R 1s a known function.

Let {x}* be the N-[a] collocation points n [0, b].

Substituting the collocation points into Eq. 8, we obtain:

ia‘(D“+L)h(x‘—xj)=f(xj),j=1,2,,,,,N—[(z] (10)
i=1
Therefore, we have the following system:
[la=f (a1

Where:

(D* + Lhix, ~x,)
(" + Dhx, -x,)

(D" +L)h(x, -x,)
(D* + Dhx, - x,)

(D% +D)h (e —x,)

- (D" + Lh ey ;)

(DB +L)h(xl - XN—[;;]) U)B +L)h (Xi 7XN—[0(]) U)B + L)h(XN—[o(] - xH-[u;])

and:
£= G £ G, F ) and a = (a, a,..., &)’

Therefore, imposing the [¢] mitial conditions, the
system of N equations with N unknowns 1s available.
Then, we must solve this system to make distinet the
unknown coefficients. Hence, we have used the Gauss
elimination method with total pivoting to solve such a
systerm.

Remark: It 13 noticeable that collocating points can be
scattered. This is one of the most important advantages
of the MQ approximation scheme [0, 0]. The numerical
results show this issue easily and the applicability of the
MQ approximation scheme in this sense, is observable.

ILLUSTRATIVE EXPERIMENTS

Here, three experiments including linear and nonlinear
problems on regular and irregular domains are solved
using MQ approximation scheme. Since, most of FDEs
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have not exact solution, therefore we must compare them
with known numerical methods such as HPM, VIM, FDM
and ADM. The results and their comparison with several
powerful methods illustrate the validity and capability of
MQ approximation scheme. If the exact solution of the
problem exists, the accuracy of an approximate solution 1s
measured by means of the discrete relative L, norm
defined as:

1

Y Liite) —u)l |
i1

2uix)
=

(12)

N

e

where, u and 0 are the exact and computed solutions,
respectively and N 18 the number of unknown nodal
values of u. The computations associated with the
experiments were also performed in Maple 14 on a PC,
CPU 2.8 GHz

Experiment 1: Consider the following FODE:
D u{x)+u” (x)+u (x) =8, x>0, 0<g<2

with the initial conditions: u{0)=u’(0)=0

This problem 18 chosen from Momani and Odibat
(2007a) and Arikoglu and Ozkol (2007). It was solved by
FDM, ADM and VIM methods. Here, we have solved 1t
by MQ approximation scheme with R, = 250, R, = 0.5,
N = 30 for different ¢ and have compared it with the
closed form series solution of the exact solution
(Momani and Odibat, 2007, Arikoglu and Ozkol, 2007)
and the three aforesaid mentioned methods. The results
show a good agreement with the same results obtained by
using the MQ approximation scheme. The comparison is
shown in Table 1.

In the above experiment, we have compared the MQ
approximation scheme with the FDM, ADM and VIM for
solving a FODE. We observe that higher-order accuracy
can be aclieved by MQ-RBF approximation scheme than
using the same terms in the other methods. The discrete
relative L, norm (N,) given by Eq. 12 forg = 0.5, 1 and 1.5
is 0.000009, 0.0 and 0.000467, respectively. These results,
demonstrate another capability of the proposed method.
Furthermore, when ¢ is an integer, the MQ approximation
scheme is so much accurate than the other methods.
the

Experiment 2: Consider FODE

(Abdulaziz et ai., 2008):

following

D*u(x) =-ux), 0=<a<l, x=0,u(0)=1
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The close form series solution of the exact solution is
obtained by HPM [0] as:

(="
ok +1)

u =%

k=0

We have tested it for seven scattered data points
(N=7)fora=0.75,085 095 withR_,, =500, R;,,=03and
have compared it with the HPM. The comparison 1s given
in Table 2.

The computed results m Table 2, demonstrate the

approximate solution obtained using the MQ

Table 1: Comparison of the solutions of FDM, ADM, VIM and MQ-RBF
approximationscheme with the exact solution for different o and x
of the experiment 1

X Uppn Uspn Uy Unio UByact
=105
0.1 0.039473 0.039874 0.039874 0.039719 0.039750
0.2 0.157703 0.158512 0.158512 0.157012 0.157036
0.3 0.352402 0.353625 0.353625 0.347351 0.347370
0.4 0.620435 0.622083 0.622083 0.604681 0.604695
0.5 0.957963 0.960047 0.960047 0.921756 0.921768
0.6 1.360551 1.363093 1.363093 1.290446 1.290457
0.7 1.823267 1.826257 1.826257 1.701999 1.702008
0.8 2.340749 2.344224 2.344224 2.147278 2147287
0.9 2.907324 2.911278 2911278 2.616993 2.617001
1.0 3.517013 3.521462 3.521462 3.101904 3.101906
=1
0.1 0.039325 0.038925 0.038925 0.038667 0.038667
0.2 0.154541 0.153742 0.153742 0.149353 0.149353
0.3 0.341385 0.340182 0.340182 0.324153 0.324153
0.4 0.595453 0.593846 0.593846 0.555303 0.555303
0.5 0.912227 0.910214 0.910214 0.835243 0.835243
0.6 1.267112 1.284685 1.284685 1.156668 1.156668
0.7 1.715433 1.712597 1.712597 1.512574 1.512574
0.8 2.192488 2.189258 2.189258 1.896296 1.8962906
0.9 2.713612 2.709964 2.709964 2.301537 2.301537
1.0 3.273081 3.270029 3.270029 2.722398 2.722398
=15
0.1 0.036111 0.036478 0.036478 0.032427 0.033507
0.2 0.139904 0.140640 0.140640 0.124318 0.125221
0.3 0.306402 0.307485 0.307485 0.266863 0.267609
0.4 0.531856 0.533284 0.533284 0.454837 0.455435
0.5 0.812989 0.814757 0.814757 0.683882 0.684335
0.6 1.146733 1.148840 1.148840 0.950091 0.950393
0.7 1.530132 1.532571 1.532571 1.249799 1.249959
0.8 1.960252 1.963033 1.963033 1.579518 1.579557
0.9 2.434223 2.437331 2437331 1.935899 1.935832
1.0 2.949144 2.952567 2.952567 2.315721 2.315526

approximation scheme, is in good agreement with the
approximate solution obtamned using the HPM for all
values of scattered data points.

Experiment 3: Consider the following nonlinear
FODE:
D*u(xHe'® =0, D<x<1, O<a<l
u{m=0 (13

The exact solution of this initial value problem for
¢=1,1su(x)=-Inx+1).

In this experiment, we use from the following
expansion to linearize " as:

We have solved this experiment forN =11 and
o = 0.75,0.85,0.95, 0.99, 0.999,

Figure 1, shows the numerical results and illustrates
a good agreement with the same results obtaned by using

15 ---"=075 —."=085
=095 -—--"=0.99
"=0.999 - " = 1 (Exact solution)

-2

Fig. 1: The graphs of the experiment 4.3 for N = 11 and
different o

Table 2: Comparison of the solutions of HPM and MQ-RBF approximation scheme for different « and scattered data points of X of the experiment 2

=075 o=0.385 o =095 a=1

X Uppy Upi ppp Upipyy U RpE Upppg U pRE Upipyy Uy poE

0.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.05 0.892917 0.905751 0.920069 0.927457 0.942535 0.944310 0.951229 0.951229
0.27 0.680261 0.679433 0.713357 0.713931 0.746846 0.747336 0.763379 0.763379
0.46 0.572031 0.572985 0.593187 0.594164 0.617822 0.618312 0.631283 0.631283
0.70 0.476554 0476411 0.481550 0.481937 0.490485 0.490791 0.496585 0.496585
0.91 0.415096 0.415769 0.407811 0.408385 0.403381 0.403676 0.402524 0.402524
1.00 0.393108 0.393464 0.381231 0.381674 0.371573 0.371831 0.367879 0.367879
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the VIM and ADM in [0]. Also, the results show that
when «-1, then approximate solution tends to exact
solution, rapidly.

CONCLUSION

In this study, a MQ approximation scheme is
proposed to solve FODEs. The results reveal that the
technique introduced here is effective and convenient in
solving FODEs. This method 1s also easy to implement
and yields the desired accuracy with only a few terms.
Other advantages of the present method are its low run
time, a minimal number of data points in the required
domain and its applicability to scattered collocated points.
All of these advantages of the MQ approximation scheme
suggest that the method 1s a valid and powerful tool.
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