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Three Terminal Quantum Dot System
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Abstract: In this study, the transmission rate for the three terminal quantum dot system is determined using
Keldysh nonequilibrium Green’s function techmique for interacting and non-interacting cases. The three
termmnal quantum dot systems consist of three leads and three quantum dots that are arranged m a triangular
form. Each led is coupled with each dot. The lesser and retarded Green’s functions are used for the calculations
of transmission rates and how the transmission rates vary for interacting and non-interacting system are studied

1s investigated.
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INTRODUCTION

Quantum dots are mesoscopic particles whose
dimensions are of the order of tens of nanometers. The
Quantum Dot (QD) is also termed as artificial atom
because of resemblance of its energy levels to that of an
atom. QDs are semiconductor struchires whose electronic
energy levels depend upon the shape and the size of the
QD. The electronic energy levels of the dot can be varied
by varymng the lead voltage which 1s coupled to the
Quantum dot. Initially the calculation of conductance for
a two terminal single QD was done through the equivalent
RC circuit model by neglecting the coherence between the
dots (Wang and Chou, 1994). The theoretical and
experimental approach for the two terminal single
quantum dot system is discussed by Yuan and Gu (1993)
and Kastner (2000). Coulomb blockade effect plays a
main rele for a two terminal single dot system
(Korotkov et al., 1995). Calculation of conductance in
terms of probability approach was done using Gibbs
distribution (Beenakker, 1991). The
conductance for a system of two terminal array of QDs 1s

formalism

analyzed as the extension of two terminal single quantum
dot and it was found that the conduction characteristics
depend number of dots m the quantum dot system
(Chen et al., 1994). There will be conduction peaks for the
even number of dots and the peaks will not be present for
odd number of dots (Chen et al., 1994). The transmission
for a QD array with quantum wires as leads for a non-
interacting system can be studied by wsing Anderson
Hamiltonian (Rostami et al., 2011). The conductance for
different configurations (like 1D array of circular order)
for a two terminal system can be done by using Green

function (L1 et al., 2005). The calculation of transmission
probability for a two terminal array of circular dots can be
calculated from the Green’s function. In this article the
three termmal QD system can be analyzed by using
Keldysh nonequilibrium Green’s fumction techmique.

THREE TERMINAL QD SYSTEM

This QD system consists of three terminals named as
lead M, lead L. and lead R and three QDs named as QD1,
QD2 and QD3 in Fig. 1. Dots QD1, QD2 and QD3 are
coupled to leads M, L and R respectively. All the QDs are
similar to each other and are arranged n a triangular form
as shown in Fig. 1. In this QD system each QD consists of
a single pair of electrons accommodated in a single energy
level. The QDs are placed such that there is no interaction
between dots. The lead M is given a positive potential
and leads I. and R are given a negative potential. The
leads and QDs are considered as non-interacting system.
To this system we will apply retarded and lesser
Green’s function to derive the conduction equation.
The total Hamiltonian of this system can be given as:

H=Hy+Ho+Ha

H =3 ep,0h oG 0 LRM.
ko,

H.= Z (VLC;,Ldkﬁ,m + VRC;E,deE,m + VMC:E,MdkE,ﬂ,)
k

3
ul
Hy, = 2 edidy + Vdidy, +Viadid,,
=

H,, H. and H,, are the Hamiltomans of the coupling
between the dots and the leads. ¢'and d' are the creation
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Fig. 1: Three terminal quantum dot system

operators in the lead and the dot respectively. €, is the
Fermi energy level of the ith QD). The current equation can
be written as:

J:%’([H,NL I (1

N, 18 the number operator and Eq. 1 denote the
commutator relation HN -N;H. The total expression for the
Hamiltonian is given:

H=V,(*d,,C,Cr +V,C"d, . C.Cr +V,C,d. C.Co (2)

-V, C, ", C,Cr -V, C " d,C.Cr -V, Cyd, CLCr

The net flow of electrons arises when there is

difference in electron tunneling from positive-potential
lead to QD system and from QD system to negative-
potential lead or from QD system to positive lead and QD
system to negative leads. TIf we apply creation and
annihilation operator for one electron C°C = 1. The first
three terms mn Eq. 2 refer to the turmeling of electron from
leads to QD system and remaining terms refer to tunneling
of electron from QD system to lead. From the QD system
electrons tunnel from lead mn to the QD system through
only one path and electrons tunnel from QD system to the
leads through two paths, thus Hamiltonian system can be
modified by subtracting the term for one incoming path
and two outgoimg paths and the Eq. 3 can be written as:

[H.N,]=V,Cid,, +V, Cid,, -V, Chd (3)

m- MY

The above expression gives the Hamiltoran H of the
total system.

GREEN’S FUNCTION OF QD SYSTEM
GEG,L = Czdsz;,R = C;dsz;,M = CK/[dm (4)

G;U,L = V[G;.,zgl(. - Gl‘,lglaLGl(U,M = V[G;,lg:n - Gilg;]ngw,R = V[G;ﬁg,‘_ - Gl(,lgi]

(5)

G1r,1 = g:; +gf,121,2(3 ;,2 +g;’,121,3G r; +glr,lZMGi1 (6)
G1(,1 = G;,IZ;/IG?,I

If we express 1 terms of the green function in Fourier
transform by transforming time domain to frequency
domain it can be written as i Eq. 4. By using Dyson
equation the above Eq. 5 can be written as mentioned in
Eq. 6.

The retarded and lesser Green’s fimction for QD1,
QD2 and QD3 can be written from the quantum dot
system. By applying the retarded and lesser Green’s
function to the QD1.The retarded function 1s calculated
based up on the number of dots and lead interacting with
the QDI1. Similarly the retarded and lesser Green’s
functions can be written for QD2 and QD3.

Giy =gy, +81,5,,00; + 85,5561 + 81, Ly Gy
Giy =gy, +81,5,,00; + 85,5561 + 81, Ly Gy
Gil = g1r,1 + g:;ZLzGiz + 31"1,121,36:,3 + glr,lZMGil

G1<,1 = G:JZ;/[G?J
G1<,1 = G;,IEK/IG?,I
3, = [T}y () + T, )~ T (), (£)IT(w) 7

From Eq. 1 to 4 we will arrive at the final expression
for In as mentioned in Eq. 7. This expression gives the
current density of three terminal QD system.

NUMERICAL RESULTS AND DISCUSSION

The graphs in Fig. 2 and 3 give the variation in
transmission rate T(w) with respect to w. The accelerated
Green’s function can be converted to retarded function by
using the identity given as:

Mo 1
e

G'G*
[o- & - A 1T

where, A(w) the interaction is term and I'(w) is the level
width function. By substituting the identity in the
transmission rate the graphs can be plotted. The
transmission rate will be different for interacting and non-
interacting cases.
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Fig. 2: Transmission rate for non interacting system
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Fig. 3: Transmission rate for interacting system

The two cases are depicted in the Fig. 2 and 3. The
graphs are plotted for transmission rates given by the
eXpression:

1
T(w)= G;J (? - G;‘,l )]

This gives the transmission rate for the non-interacting
system depicted in Fig. 2 and mnteracting system depicted
mn Fig 3.

In non-interacting case the applied potential will not
have any effect on the levels of the quantum dot. The
increase in excitation gives rise to the increase in
conduction because of the increase of energy of
electrons. The transmission ceases at a particular value of
frequency as the increased electrons cannot
accommodate on the other side of the barrier with similar
energy level. At this stage the electron cannot tunnel and
cannot generate a photon to reduce its energy level. If we
increase the excitation beyond this value the electron with
more energy value decreases its energy by generating a
photon and participates m the tunneling process. After
the ceasing pomt (point where transmission rate tends to
zero) the conduction tend to decrease because of the
increase in number of electrons with higher energy value
and lesser number of electrons with lower energy value
that can tunnel through barriers.

For interacting case the external potential can
influence the energy levels of the QDs. The mcrease in
external excitation leads to the decrease in similar energy
levels m two QD for which turmeling 1s considered. Thus
the mcrease m excitation leads to the decrease in the
transmission rate. At a particular value of frequency
{ceasing point) the transmission ceases and no turmeling
of electrons takes place. If the excitation increases beyond
this limit the electron tunnels through the barrier through

a process of inelastic scattering.
CONCLUSIONS

Before the ceasing point, the tunneling in both
interacting and non-interacting cases oceur due to
resonance tunneling. After the
interacting case the conduction process takes place
through melastic tunneling. For non-mteracting cases the
transmission oceurs through emission of photon followed
by tunneling between similar energy levels in QDs.

ceasing point, in
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