Tournal of Applied Sciences 12 (2): 186-190, 2012
ISSN 1812-53654 / DOL: 10.3923/jas.2012.186.190
© 2012 Asian Network for Scientific Information

On Modified Thermohaline Magnetoconvection-A Characterization Theorem
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Abstract: The problem of modified thermohaline magnetoconvection is considered in the present paper. An
attempt 1s made to establish the relationship between various energies in Veroms’ type configurations. The
analysis made brings out that for Veroms type configuration the total kinetic energy associated with a
disturbance exceeds the sum of its total magnetic and concentration energies in the parameter regime
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Qo Rso . Further, this result is valid for quite general nature of boundary conditions.
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INTRODUCTION

Thermohaline convection or more generally double
diffusive subject
possessing fundamental departure from its counterpart,
namely single diffusive convection and is of direct
relevance m the fields of oceanography, astrophysics,
limmeology and chemical engineering etc. For a broad and
a recent view of the subject one may be referred te
Brandt and Femando (1996). Two fundamental
configurations have been studied in the context of
thermohaline instability problem, the first one by Stern
(1960) wherein the temperature gradient i stabilizing and
the concentration temperature gradient is destabilizing
and the second one by Veronis (1965) wherein the
gradient is destabilizing and the concentration gradient 1s
stabilizing. The main results derived by Stern and Veroms
for their respective configurations are that both allow the
occurrence of @ stationary patten of motiens or
oscillatory motions of growing amplitude provided the
destabilizing concentration gradient or the temperature
gradient 1s sufficiently large. However, stationary pattern
of motion 13 the preferred mode of setting mn of instability
m case of Stern’s configuration whereas oscillatory
motions of growing amplitude are preferred in Veronis’
configuration, More complicated double-diffusive
phenomenon appears if the destabilizing
thermal/concentration gradient is opposed by the effect
of magnetic field or rotation.

Banerjee et al. (1983) presented a modified analysis
of thermal and thermohaline instability of a liquid layer
heated underside by emphasizing and utilizing the point
that linear theoretical explanation of the phenomenon of
gravity dominated thermal instability in a liquid layer
heated underside (Be’nard convection) should depend

convection has matured into a
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not onlyupon the Rayliegh number which is proportional
to the uniform temperature difference maintained across
the layer but also upon otheér parameter. So that a
provision could be made 1 the theory to recogmze the
fact that a relatively hotter layer with its heat diffusivity
apparently mcreased/decreased as a consequence of an
actual decreased/inereased (depending on the fluid) in its
specific heat at. constant volume must exhibit Benard
convection at a higher/lower Rayliegh number than a
cooler layer under almost identical condition otherwise
and further this qualitative effect is not quantitatively
insignificant.

Chandrasekhar (1952) in his investigation of magneto
hydrodynamic simple Be nard convection problem sought
unsuccessfully the regime in terms of the parameters of
the system alone, in which the total kinetic energy
assoclated with a disturbance exceeds the total magnetic
energy assoclated with it, since these considerations are
of decisive significance in deciding the validity of the
prnciple of exchange of stabilities. However, the solution
for w ( = cons tan t (sin T z)) is not correct mathematically
(and Chandrasekhar was aware of it). Banerjee ef al. (1983)
did not pursue their investigation in this direction and
consequently did not see this connection. This gap in the
literature on magnetoconvection has been completed by
Banerjee and Katyal (1988) who presented a simple
mathematical proof to establish that Chandrasekhar’s
conjecture is valid in the regime Qo,<7° and further this
result is uniformly applicable for any combination of a
dynamically free or rigid boundary when the region
outside the liquid are perfectly conducting or insulating.
Banerjee ef al. (1989) showed that m the parameter
regime:
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the total kinetic energy associated with a disturbance is
greater than the total magnetic energy associated with it.
Banerjee et al. (1987) further extended these energy
considerations to a more general problem, namely,
magnetohydrodynamic thermohaline convection problem,
of Stern’s type and established that in the parameter
regime:

Qg, |I‘| G =
+ <1
F] 4 :

the total kinetic energy associated with a disturbance
exceeds the sum of its total magnetic and thermal
energies. A characterization theorem in
magnetothermohaline convection of the Veronis’ type
was also established by Banerjee et al. (1987) m the
subsequent year.

The present analysis

considerations to  the

similar

extends these energies
hydromagnetic  modified
thermohaline convection problem of Veroms' type
configuration. The nature of system of equations for the
present problem is clearly qualitatively different from
those of thermohaline convection problem and the results
are obviously not derivable by the method adopted by
Banerjee et al. (1989) in this direction on account of non-
trivial coupling between 8, ¢ and w in the-equation of
heat conduction. However, a close and critical look at
derivation of this equation makes one feel that thus
difficulty can be taken care of by an approprate
transformation. The aim of the present paper 1s to
construct such a transformation which overcomes
the above difficulty and enables us to derive the
desired energy relationship in the " present’ modified
set up.

MATHEMATICAL FORMULATION AND
ANALYSIS

Following Banerjee et al. (1983), the relevant
governing equations and boundary conditions of the
modified thermohaline instability m their non-dimensional
form are given by:

(D7 —a?) [DE —a? 7%}W:RT 4’0 ~Rga’p— QD (D* —a’)h,, (1)

(D? -4 —p{1-T,0,})8 - T,&.R,p 0=~ (1 - T,o, )w - T,&,R,w

(2

[Dz _B}pz_ﬁ (3)

and:

[Daaa&]h _pw (4)

with:

» w=0=0=¢ on both the boundaries

» D'w = 0 on a tangent stress-free. boundary
everywhere

+  Dw=0onarigid boundary

* h, = 0 on both the boundaries if the regions outside
the flud are perfectly conducting

Dh, =-ah_atz=1

if the regions outside the fluid are insulating. (5)
Dh, =ah,atz=0

The meanings of symbols from physical point of view
are as follows:
z 1s the vertical coordinate, d/dz 1s differentiation

along the vertical direction, a’ is square of horizontal wave
number:

q
I
#le

1s the thermal Prandtl number:

U
o =—
n

1s the magnetic Prandt]l number:

1s the Lewis number:

R - gabd’

T Ko
is the thermal Rayleigh number:

R, gaf,d’
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1s the concentration Rayleigh number:
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is the Chandrasekhar number, w is the vertical velocity, 0
is the temperature, ¢ is the concentration, p is the complex
growth rate, ¢, 1s the coefficient of specific heat due to
variation in temperature and ¢, 1s analogous coefficient
due to variation in concentration, h, is the vertical
magnetic field

In Eq. 1-5, z 18 real independent variable such that:

is differentiation wrt z , a® is a constant, 00 is a

constant, 0,>0 1s a constant, 70 is a constant, R, and R,
are positive constants for the Veronis' configuration and

negative constants for Stern's configuration:

k-8
B

is the ratio of concentration gradient to thermal
gradient, p = p, + 1p, 1s complex constant in general such
that p, and p, are real constants and as a consequence the
dependent variables w (z) =w, (z) + iw, (z), 6 (z) =6, (z)+b,
(z) and & (z) = ¢, (2yHd; (z) are complex valued
functions(and their real and imaginary parts are real
valued).

We now prove the following theorems:

Theorem 1: If (p, w, 0, &, h). p=p, +1ip, p.= Cis a
solution of Eq. 1-4 together with boundary conditions
Eq. 5 with R0 R0 and:

Qo,  Rgo

n? 4t

=1,

then:

(\Dwr 452 |wf)dz - chj(|th|2 +a? \hz|2)
a

I
dz + Rgazcﬂqfdz.
3

1
0
Proof: Equation 2 upon utilizing Eq. 3 can be written as:

(D* - " =p{I-T,a,))8 - T, &R, p 1(D* —a* Jp=—(1-T,0, ) w.

(6)
Using the transformations:
W=w
o {1-Tyoy)-1)
T TaR. O+e (7
o=9
h,=h
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Equations 1, 2, 4 and 6 and the associated boundary
conditions Eq. 5 assume the following forms:

(D —a%) [DE —a? 7%jw:R; 4’0 - Ria’- QD(D’ ~a* ) h,, (8)

{D* —a* —p(1- Ty, )} 6= —Bw, (9
[Dz _g? _g}pz_z, (10)
"% h, =—Dw (1)

with:

w.= 0 =0 = ¢on both the boundaries
D*w
everywhere

0 “en a tangent. stress-free boundary

Dw =0 on arigid boundary
h, =on both the boundaries if the regions outside the
fluid are perfectly conducting

Dh, =-ah_atz=1] . . . . .
if the regions outside the fluid are insulating,
Dh, =ah_atz=0
(12)
where:
, R,T,G.R,t , R,T,&,R;1
_ 1%t RioR, 1 ipBo B:(lfTDO'.Z)

(- Ty ) -1 (Ti(l—Tgaz)—l)’

{H(‘EU—TD%)—I)})O

TRt
and the symbol ~ has been omitted for convenience.
Multiplying Eq. 11 by h,* (the complex conjugate of
h,), integrating the resulting Equation over the range of z
by parts a suitable number of times and malking use of the
boundary conditions Eq. 12 we get:

aM+J:(|DhZ‘2 +az‘hz‘z)dﬁ%'{‘hz‘zdzz_iw ph, (13)

where:

M={(n.f ) + (1) | =0

Equating the real part of Eq. 13, we get:
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1 1
aM + [(|Dh, [ +a b, [ dz+ E2L [|h, fdz
o G 1}
1
=Real part of {—jw Dh; dzJ
1}

=

jw Dh; dz
1}

(14)
1
sﬂw”Dthz

o

1 iy uz
< {“wf dz} {j\thf dz}
0 0

(using Schwartz inequality)

Since p, =0, therefore from Eq. 14, we get:

1 bz ey u2
*dz< {j\wf dz} {ﬂth i dz}
o a

j\th
0

or:

1 1
[[Dh, [ dz < [|wf' de. (15)

o o

Using Eq. 15, it follows from Eq. 14 that:
1 1
[(Ion, [ +a? |,z < [|w]" @z (16)
a a

Since w (0) = 0 =w (1), therefore using Raylgigh-Ritz
mequality Schultz (1973), we get:

ﬂw|2dz<%ﬂDw‘2 dz. (17)
[t} n [t}
It follows from Eq. 16 and 17 that:

1 1
JD'(\DhZ Fovahf Joz 4= [Ibwe

1
< %!(‘Dwf +a? ‘w|2)dz

or:

chj(|th|2 +a’ \hz\z)dz +R/c a2j|q)|2 dz
0 0

Q0. ! !
<ﬁ—21£(‘Dw‘2+a2‘w|2)dz+Rs' crazb”(pfdz (18)

Multiplying Eq. 10 by the complex conjugate of
Eq. 10 and integrating by parts over the vertical range of

z for an appropriate number of times and making use of
the boundary conditions Eq. 12 we get:

-1[(|D2q:'|2 +2a* ‘Dq:{2 + a“|<p|2 )dz + 2pj(|D(p|2 +a ‘(p|2)dz
1) 1)
2 1
+%ﬂqfdz:%2j|wf &z (19)
1] i}
Since, p,=0, therefore, from Eq. 19, we get:
1 1
g(\n%pf + 20°[Df + ' Jdz < JIwf*dz (20)

Simce ¢ (0) = 0= ¢ (1), therefore using Rayleigh-Ritz
inequality (Schultz, 1973), we get:

1 1
T:zﬂq)r dz <j|Dq)|2 dz
a 1]
and also:
1 2 1 9
TE4J.‘(|)‘ dz £HD2(|)‘ dz.(using Schwartz inequality) (21)
a 1]
Tt follows from Eq. 20 and 21 that:
20 5 1§
(:n:2 + az) ﬂ(ﬁ dz <—2j|w‘ dz
o T o

Or:

+a?) 1
(372) £\¢|2dz<aztz £|w\2 dz

Or:

1
An?t?

! |
azﬂcpfdz < j|w‘2 dz,
o o

since the mimmum value of:

(r+a’)

2
a

for a®>0 is 4%,
Hence, the following inequality results from Eq. 17:

(ol

!
azﬂcpfdz <
o

Or:
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1 R ! fo] 1
Rs'azch“q:ofdz < 4:::412 .D[(|Dw|2 +a’ ‘w|2)dz (22)
Now from Eq. 18 and 22, we get:
1 1
Qo, [{[ph, [ +a? I, Jdz + R fa*o |gf” dz
i} i}
Qs, R/o ;
< [E_zl + 412,“4}_0[(|Dw|2 +a’ ‘w|2)dz (23)
Therefore, 1f:
Qo, R,/o
o 4nt T
then from Eq. 23, we get:
1 1 1
I(‘Dw‘z +a |w‘2)dz > QGJ(‘D}IZF +a’ |hz‘2) dz + Rsfazts_”q:'|2 dz
o 1) 1)
24

and this completes the proof of the theorem.

We note that the left hand side of Eq. 24 represents
the total kinetic energy associated with a disturbance
while the right hand side represents the sum of its total
magnetic and concentration energies and Theorem 1 may
be stated n the following equivalent form.

At the neutral or unstable state in the hydromagnetic
modified thermohaline convection problem of the Veronis'
type configuration, the total kinetic energy. associated
with a disturbance is greater then the sum of its total
magnetic and concentration energies in the parameter
regime:

RJ’
dr°r

J,
Q21+
T

15

5]

F)

and thisresult 1s uniformly valid for any combmation of
dynamically free or rigid boundaries that are either
perfectly conducting or insulating.

CONCLUSIONS

In the present study, the hydromagnetic modified
thermohaline convection problem of Veronis® type
configuration 1s considered. The analysis made brings out
the following main conclusions:
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At the
magnetohydrodynamic
problem of the Veronis’ type configuration, the total
kinetic energy associated with a disturbance 1s
greater than the sum of its total magnetic and
concentration energies in the parameter regime:

in the
convection

unstable
thermohaline

state

. neutral

or

Rg

41in

Qo
TE2

[s)

7 =1

=

and this result 15 uniformly valid for any combmation of
dynamically free or rigid boundaries that are either
perfectly conducting or insulating.
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