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Abstract: Tn the first stage of failure, the vibrations of gearboxes have a low range, which are often covered with
stronger vibrations of the system. Thus, diagnosing the faults of the gears of the gearbox is difficult among the
vibrations of other parts of the machine. In this regard, varied mathematical methods have been used, each
having its own potentials and shortcomings. Fast Fourier Transforms (FFT) and Short-Tine Fourier Transform
(STFT) are two of these methods. However, due to the wide range of gearbox faults, distinguishing these faults
is not possible via the aforementioned methods. So, with regard to the capability of empirical model
decomposition EMD method in distinguishing faults, this study mvestigates the gearboxes vibration signals
practically and 1 laboratory. First some intentional faults are applied on the experimental gearboxes. Then, the
group of vibration signals of varied faults is collected and the data collected from the practical test are analyzed.
Finally, a neural network was offered for an intelligent fault diagnosis of the gearbox. The findings verified the
suggested methods (computing standard deviation and root-mean-square) not only are accurate enough but
also have reduced the size of computations to a great extent.
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INTRODUCTION

Precise and on time diagnosis of the faults leads toa
good outcome, profitable maintenance and repair methods
for industrial units. This can be done by using accurate
and practical scientific methods m the form of advanced
machines for condition monitoring, as well as using
specialists familiar to the relevant sciences and
technologies. Since the mid 1950s, the measurement and
analysis of the vibrations 1s known as the major techmque
in controlling the machineries” condition while working.
Each mechanical fault causes vibrations with certain
Therefore, by measuring vibrations and
considering their features, we can diagnose the relevant
mechanical fault. So, special sensors are used for
measuring the vibrations of the machine and these
measurements are recorded (Shen ef al., 2012).

The main problem in analyzing the vibrations of the
system is transforming the recorded raw signal to
analyzable data for the operator. This transformation
which 15 done wvia mathematical relations should
(Wowlk, 2000) have the ability to show any pomt relevant
to the signal one by one and eliminate irrelevant data. In
this regard, varied mathematical methods with different

features.

potentials and shortcomings are used. These method
could be categorized mto two mam group: classic signal
processing (McFadden and Smith, 1984) and intelligent
systems for example FFT, Wigner-Ville distribution
(Baydar and Ball, 2001), wavelet (Newland, 1994,
Wang and Gao, 2003), Hilbert-Huang transform
(Peng and Chu, 2004), blind source separation
(Tse et al., 2006), statistical signal analysis (Jardine ef af.,
2006) and their combinations (Fan and Zuo, 2006;
Farma et al., 2008) are classic signal processing methods.
ANN-based (Payaetal, 1997), GA-based (Samanta, 2004),
expert systems (Ebersbach and Peng, 2008), combined
algonthms (Rafiee and Tse, 2009, Rafiee ef al., 2007, 2009)
and EMD (Yang and Tavner, 2009) could be classified as
intelligent systems. Currently, industrial applications of
intelligent monitoring systems have been increased by the
progress of mtelligent systems. In recent years, many
researchers have used EMD methods due to the
inefficiency of the aforementioned methods in precise and
on time diagnosis of some faults and also the effects of
gear faults on vibration frequencies and so making local
changes and making the signals unstable. In this respect,
Parey activities (Parey et al., 2006) were done in gear
modeling in order to identify faults at the initial stages of
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the growth via EMD method. Loutridis was the first
person  who used EMD method in gearbox fault
diagnosis with varied cracks in the gear. However, he
failed at making an intelligent system (Loutridis, 2004).
Yang and Tavner (2009) investigated shaft vibration
signals via EMD method (Yang and Tavner, 2009).
Lei et al. (2009), used a method known as optimized EMD
for fault diagnosis; a method which was complex and
consisted of more computations compared with EMD
method (Lei et al, 2009).The main problem in EMD
method 1s its complexity and so needing much experience
and insight in physics 1ssues in diagnosing faults. Thus,
one of the major challenges in EMD method is having
systematic intelligence for ntelligent fault diagnosis. In
order to solve this problem, Ricel and Permacchu (2011)
aimed at making intelligent choices of optimized Intrinsic
Mode Functions (IMFs) for fault diagnosis but their
method was restricted to certain faults and lacked a
thorough mtelligent method for fault diagnosis. So, this
project aims at creating an intelligent neural network
based on EMD method.

DATA RECORDING

In this study, in order to collect experimental data, a
four-speed motorcycle gearbox, a single phase electric
motor with 380 w power and nominal speed of 1420 RPM,
system, a triaxial
accelerometer, an optical tachometer and a coupling for
connecting the internal and external shaft of the gearbox
and four rubber shock absorber under the system for
hindering sudden vibrations are used (Fig. 1).

To have faults on the gears, a 29 teeth gear in the
fourth gear 1s used on the mternal shaft. In contact, this
gear has the highest circular speed (Fig. 2).

In Fig. 2, A and B mdicate the shaft A and shaft B.
Gears A4 and B4 are a pair of driving and driven gears.
Gears A2 and A4 mounted on the output shaft and Bl and

a multichannel pulse analyzer

B3 mounted on the input shaft were fixed in the gearbox
and N indicates the number of teeth.

Figure 3 shows the faults of slight-worn, broken teeth
of the gear and accelerometer location.

Moreover, Fig. 4 and 5 show the vibration signal in
the gear with slight worn and medium worn, respectively.
The vertical axis shows just relative displacement and has
1o defined urt.

Figure 6 and 7 indicate the FFT analysis of these
faults. As shown, faults cannot be diagnosed via
Fig. 6 and 7. In these two diagrams the vertical axis also
shows the relative numbers.

Gearbox

Motor

Shock
} absorber

acquisition
system

£

Joint parts

B1,N15 FIX B2, N25

Fig. 2: Schematic diagram of the gearbox

Fig. 3(a-c): (a) Slight worn gear, (b) Broken teeth and (¢) Accelerometer location
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Fig. 5: The medium-worn vibrational signal
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Fig. 6: The slight-wom FFT diagram
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Fig. 7. The medium-worn FFT diagram
EMD METHOD

In EMD method, it 1s hypothesized that each signal
consists of varied simple sine curves (2). Therefore, each
signal can be decomposed mto a few waves or so called
IMFs. In order to have IMFs, the following stages should
be done (Yang and Tavner, 2009):

¢ Tdentifying all the maximum and minimum local points
of the signal

¢ All maximum points should be linked together via a
grade 3 spline. The same should be done for all
MImmum poits

s After computing the average size of maximum and
minimum spline, it 18 defined as m; and its difference
with the quantity of the main mput signal relevant to
vibrations (x (t)) is called h,:

X(t)}-m, =h, )]

where, h, is the first element to be investigated with regard
to whether it 15 IMF or not? For this reason, two
terms should be checked (Huang et al, 1998,
Loutridis, 2004):

s In all data, the number of zeros and extrema of the
signals should at most differ by one number

¢ The average size of local range of the maximum and
minimum in each part of the signal should be the
same

If b, 1s not part of IMFs, h, behaves as a basic signal
and the aforesaid stages should be done again. These
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stages repeat until h, becomes an TMF. The first part of
IMF which can be obtained from the data separates from
the base signal and the remaimng signal acts as a base

signal.
HILBERT TRANSFORM AT.GORITHM

comsists  of a wave with a certain
The first IMF is a wave having
available in the primary

Each IMF
frequency range.
the  highest frequency
signal. Other IMFs consist of waves with the
lowest  frequency m  the primary  signal
(Parey et al, 2006). The man objective of Hilbert
transform  of signal C, () is described as follows
(Loutridis, 2004):

S0 2

H[C,)]=

After Hilbert transform, the frequencies in each IMF
can be obtained via relations Eq. 3:
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Z,(t) = C,(t)+ TH[C ()] = a,(t)e™" (3)

and

a,(ty = O (1) + H [C,(1)]2 (4)

In the presence of fault frequency in each IMF, the
fault can be detected. The diagram of the six first IMFs
gained of an average fault signal 1s shown in Fig. 8. In
this Fig. 8 also the vertical axis shows the relative
displacement.

CREATING A NEURAL NETWORK

Neural networks which are mainly derived from the
human nervous system have been widely used as a kind
of mtelligent system in recent decades. Learmng potential,
flexibility and mteroperability are features which make
neural networks appropriate for scientific and engineering
problems.
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Fig. 8(a-f): The six first IMFs of medium-worn signal, (a) The first IMFs of medium-worn signal, (b) The second IMFs
of medium-worn signal, (¢) The third TMFs of medium-worn signal, (d) The forth TMFs of medium-worn signal,
(e) The first fifth of medium-worn signal and (f) The first sixth of medium-worn signal

Table 1: Comparing the standard deviation (SD) and the root mean square (RMS)

8D af the first six intrinsic mode finctions (FMs)

RMS of the first six intringic mode finctions (TFMs)

Faultless Slight-worn Medium-worn Broken-tooth Faultless Slight-worn Medium-worn Broken-tooth
42.9096 21.0224 24.3843 33.9922 38.2577 224913 26.1987 394564
187598 14.1941 20.7309 34.6533 15.6148 17.2084 21.3528 31.4283
7.9966 6.8833 7.2478 10.8018 7.0608 6.3387 6.8745 9.8407
8.6987 44158 5.929 8.415 4.7397 4.6425 4.3063 5928
8.9609 5.0545 7.352 8.2265 6.0275 4.9656 2.9353 7.3935
9.7403 15.0638 6.3042 5.6479 9.1176 4.9925 2.7754 4.8117
Table 2: The results of testing the neural network via standard deviation (§8D) and the root-mean-square (RMS)
Validation of SD results Validation of RMS results
Net Broken- Medium- Slight- Net Broken- Medium- Slight-
struchire Faultless (%) tooth (%6) worn (%6) wormn (%) structure Faultless (%6) tooth (%6) worn (%o) worn (%6)
6:10:4 100 100 100 100 6:11:4 100 100 100 100
6:11:4 100 100 100 100 6:12:4 100 100 100 100
To diagnose faults, in this study first each signal is CONCLUSION

decomposed into several sub-signals via EMD method in
the MATLAB programming software. Then, standard
deviation and the root mean square of the first six signals
are computed (Table 1) at different stages and used as the
input of the neural network in different networlks.
Therefore, the toolbox of the neural network in the
MATLAB software 1s used. The network used has a two-
layered perception structure with error back propagation
as its learning algorithm and Sigmoid function as transfer
function for all layers.

The data collected from 100 revolutions of vibration
signal in each group of gearbox fault was used to teach
the networle. Then, in order to investigate the performance
of the network in each fault, 100 vibration signals are
tested. Table 2 shows the results of testing the neural
network via standard deviation and the root-mean-square,
respectively.

In this study, a neural network 1s offered for fault
diagnosis via EMD method which has less input
compared with wavelet analysis method. Besides, the
method suggested in this study is more accurate and
provides precise answers m all cases. Thus, both
suggested methods (computing
and root-mean-square) not only are accurate enough but
also have reduced the size of computations to a great
extent.

standard deviation
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