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Approximate Analytical Solutions for Singularly Perturbed Boundary
Value Problems by Multi-Step Differential Transform Method

Essam R. El-Zahar
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Salman Bin Abdulaziz University, P.O. Box 83, Alkharj, 11942, Kingdom of Saudi Arabia

Abstract: In this study, a reliable algonthm to develop approximate solutions for two point singularly perturbed
boundary value problems exhibiting boundary layers is proposed. Using singular perturbation analysis, the
original problem is replaced by two suitable first order Initial Value Problems (IVPs). Then, the multi-step
differential transform method is applied to solve these IVPs. Several illustrated examples of linear and nonlinear
problems are given to demonstrate the effectiveness of the present method. Numerical results show that the
present method is very effective and convenient for solving a large number of singularly perturbed problems

with high accuracy.
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INTRODUCTION

Singularly Perturbed Boundary Value Problems
(SPBVPs) arise frequently in many fields of applied
sciences particularly in the studies of fluid dynamics,
quantum mechanics, chemical reactions, optimal control,
etc. These problems have received a sigmificant amount of
attention in past and recent vears. Tt is well known fact
that the solution of these problems exhibits a multi scale
character, that 1s, there are thin transition layer(s) where
the solution varies rapidly and while away from the
layers(s) the solution behaves regularly and varies slowly.
If we apply the existing classical numerical methods for
solving these problems large oscillations may arise and
pollute the solution in the entire interval because of the
boundary layer behavior. Therefore, the numerical
treatment of singularly perturbed problems presents some
major computational difficulties. Thus, more efficient and
simpler computational techniques are required to solve
these problems. For a detailed discussion on the
analytical and numerical treatment of such problems one
may refer to the books of O’Malley (1991), Doolan et al.
(1980), Roos et al. (1996) and Miller et al. (1996). In
general, the nmumerical solution of a boundary value
problem will be more difficult matter than the numerical
solution of the corresponding mitial-value problems.
Hence, we prefer to convert the second order SPBVP into
first order problems. In fact, some numerical techniques
employed for solving SPBVPs are based on the idea of

replacing a two-point boundary value problem by two
suttable 1utial value problems; see for example
(Kadalbajoo and Reddy, 1987, Gasparo and Maccomn,
1989, 1990, 1992; Valanarasu and Ramamyam, 2004; Reddy
and Chaloravarthy, 2004 ; Kumar et «., 2009; Habib and
El-Zahar, 2008; El-Zahar and El-Kabeir, 2012). The aim of
our study 1s to employ the multi step differential transform
method as an alternative to existing methods in solving
SPBVPs. The concept of the Differential Transform
Method (DTM) was first proposed by Zhou (1986) and 1its
main application concern with both linear and nonlinear
initial value problems in electrical circuit analysis. The
DTM 1s a semi-numerical and semi-analytic methed for
solving a wide variety of differential equations and
provides the solution 1n terms of convergent series. It 1s
different from the traditional high order Taylor series
method which requires symbolic computations of the
necessary derivatives of the data functions. The DTM 1s
an iterative procedure for obtaining analytic Taylor series
solutions of differential equations. Different applications
of DTM can be found (Jang et al., 2000; Koksal and
Herdem, 2002; Abdel-Halim Hassan, 2002, 2008; Ayaz,
2004, Arikoglu and Ozkol, 2005; Ravi Kanth and Aruna,
2008, 2009; Chu and Chen, 2008; El-Shahed, 2008;
Momani and Erturk, 2008; Al-Sawalha and Noorani,
2009, Ebaid, 2010; Thongmoon and Pusjuso, 2010,
Alomari, 2011; Dogan ef af, 2011). Although the
DTM is used to provide approximate solutions for
a wide class of nonlinear problems in terms of convergent
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series with easily computable components, the DTM has
some drawbacks. By using the DTM, we obtain a series
solution, actually a truncated series solution. This series
solution does not exhibit the real behaviors of the problem
but gives a good approximation to the true solution in a
very small region. To overcome the shortcoming, the
multi-step DTM was presented m (Odibat ef al., 2010;
Gokdogan et al, 2012; Yildwim et al, 2012
Keimanesh et al., 2011). In this paper, a reliable algorithm
to develop approximate analytical solutions for two point
SPBVPs exhibiting boundary layers 1s proposed. Using
singular perturbation analysis, the original problem 1s
replaced by two suitable first order IVPs; namely, a
reduced problem and a boundary layer correction
problem. These mitial value problems are solved by multi-
step DTM. Numerical examples will be given to
demonstrate the effectiveness of the present method.

DESCRIPTION OF THE METHOD

Consider the two point singularly perturbed
boundary value problem:
E%W(X)%Jrq(x,y):h(x), x £[a,b] (1)
with boundary conditions:

y(a) =« and y(b) = 5

where, € 15 a small positive parameter O<e<<1, ¢ and [ are
given constants, p(x), q(x,y) and h(x) are assumed to be
sufficiently contimuously differentiable functions and
p(x)=P=0 for azx<b, where P is some positive constant.
Under these assumptions, problem (1) has a solution
which in general displays a boundary layer of width O(e)
at x = a for small values of €.
Equation 1 can be written as:
d’y

252+ L ip(0y)=Foxy), xelab] 2)

where:

F(xy) = p'X)y-qx,y Hhix)

Now, let u(x) be the solution of the reduced problem:

p(x)gx—quq(x,u):h(x) with u(by=p (3)

Then an asymptotically approximation to the given
Eq. 2 as follows:

2
E% +% (p(x)y): F{x,u)+ O(g) (4)

with the boundary conditions:

y(a) = and y(b) = B (3

By integrating Eq. 4 we have:
a%’ +(p(x)y) = [Flx, upds + 0(e) ()]

where:
[Fix, wx = [(p'(x)u - q(x,v) + hix)) dx
Using Eq. 3 we get:
IF(X, w)dx = j(p'(x)u +px)uydx=p(x)utk
Then Eq. 6 results in:

Eil—di+p(x)y:p(x)u+k+0(a) (7

where, k 15 the integration constant. In order to determine
k, we use the fact that the reduced equation of Eq. 7
should satisfy the boundary condition at x = b. Thus we
getk=0.

Hence, a first order imitial value problem which is
asymptotically equivalent to the second order boundary
value problem (1) was obtained:

E%er(x)wzp(x)u (8)
with mitial condition:
w(a) =«

Over most of the mterval [a,b], the solution of Eq. 3
behaves like the solution of Eq. 8 but at the end x = a,
there 1s a region in which the solution varies greatly from
the solution of Eq. 8. To portray the solution over this
region, we will use the substitution x-a = €t, the stretching
transformation which means dx = edt. This transforms
Eq. & into:

c:i—‘erp(aJr et) w = p(a +et)ula +&t) (9)

Taking € = 0 in Eq. 9 leads to:

dw

& +p(a) w=p(a)ufa) (1 0)
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If we require the solution of Eq. 10 to compensate for
the fact that the solution of the reduce problem, Eq. 3,
does not satisfy the boundary condition at x = a and
further that this solution goes to zero as t-se, then we
obtain the boundary layer correction problem:

%‘*’P(a)v:l)with v(0)=ct—u(a) (11)

Then, from standard singular perhurbation theory it
follows that the solution of Eq. 8 admits the
representation in terms of the solutions of the reduced
and boundary layer correction problems; that is:

yex) = u(x) +viH) + Ofg), t =22 (12)
£

Applying multi-step DTM on the two IVPs (3) and
(11) goes in opposite direction and the boundary layer
problem, Eq. 11, is solved when the solution of the
reduced problem, Eq. 3, 1s known at x = a. The solution of
the original boundary value problem (1) is a combination
of the obtained solutions.

BASIC DEFINITION OF DIFFERENTIAL
TRANSFORM METHOD

Suppose that the function (1) is analytic in a domain
D and let r = 1, represents any point in D. Then the
function f(r) is represented by a power series whose
center 15 located at r,. The differential transform of kth
derivative of the function f{r) 1s defined as follows:

F(k):%[d:ﬂ (13)

where, f(r) 18 the original fimction and F(k) is the
transformed function. The differential imverse transform of
F(k) 1s defined as:

£) =3 FRT 1) (14)
k=0

From Eq. 13 and 14, we get:

o k.
f(r):;%{ddfrgr)} (-1 (15)
o .

Equation 15 mmplies that the concept of differential
transform 1s derived from Taylor series expansion but the
method does not evaluate the derivatives symbolically.
However, relative derivatives are calculated by an iterative
way which is described by the transformed equations of

Table 1: Operation properties of differential transtormation
Original function Transformed function

i) = u (v () Flk)=U (kv (k)

f(r) = cu (O k) = aU (k)

()= d‘;® Fk)y=(kt1) U (k+1)

< U Fk) = k+1)(k+2)  (k+m) U (k+m)
=

f)=u@ v @ Fik) = i U (k- £

()= P < g
k!
1 , ifk=m
f(r) = (etry™ Fky =) (mm-1)._(m-k+D/k)(a+n ™ | if k<m
¢} , ifkem

f(l") = sin ((DI‘+OC) Fk)= %5111(031'0 + C)L+k77[)

f(r) = cos (wr+o) Flky= Cli—klcos(o:r0 + 0L+k7n)

the original function. For implementation purposes, the
function f(r) is expressed by a finite series and Eq. 15 can
be written as:

Fryes ZN;F(k)(p ) (1e)
k=0
which implies that:

SRR -1t

N+

1s negligibly small. The fundamental operations performed
by differential transform can readily be obtained and are
listed in Table 1. Using DTM, a differential equation can
be transformed into an algebraic iterating equation n the
K domain. The differential transform F(k) of the unknown
function f(r) can be obtained by solving the iterating
equation and f(r) can be obtained by the inverse
differential transform of F{k) according to Eq. 14 or 15. In
order to speed up the convergent rate and to improve the
accuracy of resulting solution, the entire domain D 1s
usually split into sub-intervals and the multi-step DTM is
applied.

BASIC DEFINITION OF MULTI-STEP
DIFFERENTIAL TRANSFORM METHOD

Although, the DTM is used to provide approximate
solutions for a wide class of nonlinear problems in terms
of convergent series with easily computable components,
the DTM has some drawbacks. By using the DTM, we
obtain a series solution, actually a truncated series
solution. This series solution does not exlubit the real
behaviors of the problem but gives a good approximation
to the true solution in a very small region. To overcome
the shortcoming, the multi-step DTM that has been
developed for the analytical solution of the differential

2028



J. Applied Sci., 12 (19): 2026-2034, 2012

equations is presented in this section. For this purpose,

the following non-linear initial-value problem 1s

considered:

u(r, £, £, ... =0 (17
subject to the imitial conditions [P(r) = ¢, for
p=0,1,..... ,q-1.

Let [1;, R] be the mterval over which we want to find
the solution of the initial value problem (17). In actual
applications of the DTM, the approxumate solution of the
initial value problem (17) can be expressed by the finite
series:

£~ 3 PRI 1) relh.R] (18)
k=0

The multi-step approach introduces a new idea for
constructing the approximate solution. Assume that the
interval [r, R] is divided into M subintervals [r,, 1,.,,],
m=01,..... M-1 of equal step size h = (R-r,)/M. The main
ideas of the multi-step DTM are as follows. First, we apply
the DTM to Eq. 17 over the interval [ry, 1,], we will obtain
the following approximate solution:

£y~ 3B (0~ el 1] (19)

using the initial conditions §,* (r;) = ¢,. For m=1 and at
each subinterval [1,, 1,,,,] we will use the initial conditions
£,9 (r,) =% and apply the DTM to Eq. 17 over the
interval [y, e ], Where 1y in Eq. 17 is replaced by r,,. The
process 1s repeated and generates a sequence of
approximate solutions £ (1), m =0, 1, ... ... , M-1, for the
solution f (r):

M
£, =2 F,®&¢-r,)*, relt,, n,] m=01...,M-1
o}

In fact, the multi-step DTM assumes the following
solution:

fylr), re[g,n]

£ (r), refh, ol
f(r)=45;(r), refn, 5]

(1), T € [Ty, Tyl

The new algorithm, multi-step DTM, is simple for
computational performance for all values of h=r,, -1, Tt
is easily observed that if the step size h = R-r,, then the

multi-step DTM reduces to the classical DTM. As we will
see m the next section, the main advantage of the new
algorithm is that the obtained series solution converges
for wide time regions and can approximate the solutions
of singular perturbation problems.

APPROXIMATE SOLUTIONS BY MULTI-STEP
DTM FOR SPBVPs

Here, we discuss four different examples and the
results will be present in figures and tables. For
connivance, we have used two different step sizes,
h, and h,. h, 1s the step size used with the solution
of the reduced problem (3) where the entire domain
is divided into M subintervals. While h, is the step
size used with the solution of the boundary layer
correction problem (11) over a region [a, t,] where v(t,)<d

and 0 1s a specific tolerance. In our computations we take
5=10"

Example 1: Consider the following constant coefficient
singular perturbation problem from Bender and Orszag
(1978):

ey (x)ty' (x)-y(x) =0, xe[0, 1] (20)

with boundary conditions y(0) = 1 and y(1) = 1. The exact
solution 13 given by:

{e™ — 1je™" + (1—e™ )e™*
y(x)= o

where, m, = (-1+~/1+4g)/(2e) and m, = (-1 -1+ 42)/(28)
The reduced problem is:
u'(x)-ux)=0withu(l)=1 2n
and the boundary layer correction problem is:
v'({t)rtv(t) = O with v(0) = 1-u (0) 22
Taking the differential transform of both sides of
Eq. 21 and 22, we obtain the following recurrence

relations:

U_(k+D=TU_(k)/k +1), U,(0)=1, U_{O=u,,(x,) m=12, ... M1
V. (k+1)=-V, (k)/ik+1), V,(0)=1-u{0), V.(®=v_{t.) n=L2,..

Forh, = 0.5, h, = 1.0, the approximate solutions are
given as follows:
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A -
o w= R #el0310] [l—%}u’(x)—%u(xﬁo with u{l) =1 (24)
uxE)=
w0 =06065308e 3, &0 Lo g
i) kl
10 k
0 532120542 (71)“£t £[0.01.01, 0 232544152 (—ljku te[10 2.0] and the boundary layer correction problem
0 085548222( 1)“& £ e[2.03.0], 0 031471432( pé 71(3 9" | 130 40] 15:
= 4.0)F L (=50
0.01157760% (1 L2 4 214 05.0], 0.00425920% (-1 Le[50 6.0] :
T S VI(EHv(E) = 0 with v(0) = -u(0) (25)
wB =10 00156687% Hﬁﬂte[e 07.0], 0.000576433 (I i 1Z o+ te[70 8.0]
k-
0 000212052( s 10 8 0) C[8.09.01,0 0000780&( oo 9 9y e 100 Taking the differential transform of both sides of
Eq. 24 and 25, we obtain the following recurrence
0000028702( L1007 100) tel10.011.0], 0000010562( i (t ” O otz 4 : 8
relations:
0 000003882( 1)“@ £=[12.013.0, 0.00000000 t 13
k
U,k +1)=[[Zx:Um(k+l— ik +1- r)]JrUm(k)j/(l(k +1)) =0, (k)/(2-x,)
=0
where: U, (0 =1 U, (0 =uy, (£, ). m=12,....M
Vol +1) ==V, (k)/(k +1),
V, (0) = —u(0), V.i0)=v__, (.}, a=12,....

p=X
€

Figure 1 shows the absolute error obtained from the
present method for Example 1 at £ = 107" overall the entire
domain.
Example 2: Consider the variable coefficient singular

perturbation problem from Kevorkian and Cole (1981)

"(x)+(1—7j (X)——y(x) 0, xe[0]] (23)

with boundary conditions y(0) = O and y(1) = 1. The exact
solution 18 approximated by Nayfeh (1973) and given by:

1 2
L lamrtrae

— 1 —
y(x) a2

The reduced problem 1s:
405107
3.51

3.0 ,

Error

Forh, =1/3, h, = 1.0, the approximate solutions are

given as follows:

15
1.000000007 (= ~ 1, = eEl 0

fi

12
33
Lezo LY 1
0599999993 [ Z; —7)], [07]
g[ﬁx 3 xE 3

o o (1.0
050024696 (~T)* 22 12[0.0 1.0, 0 18403059 (- =~ t€[1020]
k-0

> (3e-3)
ulx)= 10749999983 [ 2z -S| L x
w4 3

0 05770107%(71)‘* O%O)k te[2030], 0 02490583i(71)"0’1+0)k te[2.04.0]
0 00915235};}?0 (71)“0%0)26[4 05000 00337054;1 HJN%O)]{ te[5.06.0]
wit)= 10 00123999%(71)"071{76'0)kt6[6 0700 00045517}%(4)“ﬂte[7 08.0]
0 00016781}(2]:(—1)k@t6[8 05.0],0 00006174§( 1)k%te[9 0100]
[1011],000000835%(—1) w0 :: of te[1112)
for

o - 10,0
0.000022713 (—1)“% te

k-0

0.00000000t =12

T T
= 107 10”

00—

10

X

Fig. 1: Absolute error obtained from the present methed for Example 1 ate = 107"

2030



J. Applied Sci., 12 (19): 2026-2034, 2012

x107°

151 \

o]
0.5- \

Error

Fig. 2: Absolute error obtained from the present methed for Example 2Zate = 107"

Figure 2 shows the absolute error obtained from the
present methed for Example 2 at £ = 107 overall the entire
domain.

Example 3: Consider the non-linear singular perturbation
problem from Bender and Orszag (1978) given by:

ey G2y (xHe"™ = 0, xe[0, 1] (26)
with boundary conditions y(0) = 0 and (1) = 0. The
problem (26) has a uniformly valid approximation
(Bender and Orszag, 1978) for comparison:

¥(x) = log (2/(14x))-(log, 2)e™

The reduced problem is:
20’ +e"™ = with u(1) = 0 (27)
the boundary layer correction problem is:

v'(t)+2v(t) = 0 with v(0) = -u(0) (28)
and the obtained recurrence relations are:

U (k+1) = -F(k)/(2(k+1))

where:

k-1
F(=e""and F, (k) :%ZFH\ Ok-nU (k-1), k=12,..
r=0

U, (=0 U, (@=u,_(x,) m=L2..M
V,k+D=-2V (k)/(k+1),
V,(O=—u(0), V.()=v(,), n=12..

For b, = 1/3, h, = 0.5 the approximate solutions are
given as follows:

069306456 - 0.99902344 x +0.49462891 x* - 0.31510417 =* +0.20703125x " - 012460938 x* +6.2825521e - 2%°
— 24553571 e- 25" +6.8350375e- 3x° —1.193576de- 3x* + 97656250 - 5 % xef2/3 1]
W)= 049314115 - 099980514 + 49916114 x* — 032023515 x* +0.23630053 " - 0.16675228 x° +0.10551721 =*
—54611515e-2x° +2.0011219e- 2x° - 5.1508224e - 3x* + 6046616 e - 43 xells3 273]
069314715 - 099999904 + 049998522 x* - 033319473 »° +0.2491 2357 2 * - 019605446 =* +0.15364551 x°

- 0.11083930 x° +6 5699108 - 25 — 27113914s - 22° +56313514e- 3 xeld 143

N b -5
1SN DD el 03] -023990 I -3 te[0510]
= P

N et " gy
B} 380727752&22(—2)'% tell0 15], ~2450977104e-2 32 & kzl.o) tell 520
= &

W oo . s
-1 2695436[@&2;(—2)‘% I.E[Z53D],—467D39D224a—3§(—2)’% te[30 35]
w e w o
it = —171814055%.32(—2)‘7(‘ :Ij) Le[3.540]_—5.3205856343.42(—2)‘7(‘ :I'D) te[40 45]
= =
. e w e
-2 32525ux13e,4z(-2)‘% te[45 50]-8 55412D234&52(—2}’% te[50 53]
= ! =
Ny

kl
0.00000000 =63

Lef60 65]

u v Gen
31468851600 - 53 (-2 te55 60)- LLSTET4430e - S (-
= = ]

K

Figure 3 shows the absolute error obtained from the
present method for example 3 at & = 107° overall the entire
domain.

Example 4: Finally, consider the non-linear singular
perturbation problem

ey” (x)1ty' (x)Hy(x)) = 0 xe[0,1] (29)

With boundary conditions y(0) = 0 and y(1) = 0.5. For
comparison we take the umform valid expansion:

—x /g

e
x+1 (1+x)°

yix) =

The reduced problem is:

u' GOHu) = 0 withu(1)=0.5 (30)
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Fig. 3: Absolute error obtained from the present method for Example 3ate = 107"

—5
I'4__y10

0.8

Error

0.6

0.4+

0.2

0.0
107"

Fig. 4: Absolute error obtained from the present methoed for Example 4 ate = 1077

And the boundary layer correction problem is: w1 %[7 %]“(x-})‘“_ £e[261 10]
e m!
()= u,(x):nsguogugusai(-n SQDDQDQDSB)”M, zell/3 23
I . Tl !
v(tHv () =0withv (0)=-u(0 31 " N
(trtv (1) (©) (©) (31 uj(x)=EI74999998212(70.7499999821)’“%, ze[0 1/3]

The recurrence relations are:

U, (k+1)= [‘*”

k+1)

Ug(0y=0.5, U (0)=u,,(x,),
v, (k + 1= AL
(k +1)

Vp(0) = —u(0), Y, (0)= v, (L)

Zk: U, U, (k- r)J

oo n L(-10)
—0.999989720% " (—1) e te[00 10], - 36787046438 - 17 (1) T te[L0 2.0
= i
1 _amy 1 _aq
I = — te . - E- =y — te
011353353003 s ¢ }SIU) 2.0 30 4978707778 - 2 n d ;iu) 3.0 4.0
= ! = !
w _A0y n _s gy
-1 831564350&—22(—1)’% te (.0 5.0, 767379491195732(71)‘% te[5.0 6.0]
= =

o e 1 g
()= —24787531125-32(—1)‘% te[fi070], —91188236705-42(—1)‘% 1e[7.0 81
= | = ]

L a8 Lo =50y
m=1L12,..,M —3.354627967e -4 (- 1) = t[8.0 8.0], - 1.234098730e - 43 (1 i te[9.010.0)
3 =

W o » o
-45399953305-52(-1)’% te[ln 11], -16701712343-52(-1)‘% tefll 12]
= =

0.00000000 t=12

Figure 4 shows the absolute error obtained from the

For b, = 0.5, h, = 1.0 the approximate solutions are present method for Example 4 at ¢ = 107 overall the entire

given as follows:

domain.
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Table 2: Maximum absolute error correspond to the present method for Example 1todathy, =h, =0.1

g 1073 107 107 107¢ 1077

Example 1 3.9570e-004 3.6781e-005 3.6786e-006 3.6789e-007 3.6951e-008
Example 2 6.7701e-005 6.7671e-006 6.7668e-007 6.7668e-008 6.7668e-009
Example 3 2.5880e-008 2.5880e-008 2.5880e-008 2.5880e-008 2.5880e-008
Example 4 7.3466e-004 7.3565e-005 7.3575e-006 7.3576e-007 7.3576e-008

Table 2 presents the maximum absolute error for the
numerical solution obtaned for each previous example
for different values of the perturbation parameter € at
h, =h, = 0.1. The results in Table 2 show that the present
method approximates the solution very well for different
values of the perturbation parameter €.

CONCLUSIONS

In this study, the multi-step DTM 15 employed
successfully to obtain approximate analytical solutions for
the two pomt SPBVPs exhlibiting boundary layers. The
original problem 1s replaced by two first order IVPs;
namely, a reduced problem and a boundary layer
correction problem. Then, the multi-step DTM 1s applied
to solve these TVPs. Applying multi-step DTM on the two
TVPs goes in opposite direction and the solution of the
original boundary value problem is a combination of the
obtained solutions. The method is implemented on four
linear and non-linear problems taking different values of
€. The method provides the solutions in terms of
convergent series with easily computable components. It
leads to tremendously accurate results for different values
of the perturbation parameter € The method works
successfully mn handling linear and nonlinear problems
with a mimmum size of computations and a wide interval
of convergence for the series solution. Analytical
approximations are presented for each test problem and
numerical results are presented in figures and tables. Tt
can be observed that the present method approximates
the solution of SPBVPs very well.
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