Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Journal of Applied Sciences 12 (21): 2182-2194, 2012
ISSN 1812-5654 / DOL: 10.3923/1a8.2012.2182.2194
© 2012 Asian Network for Scientific Information

An Aspectual UMIL Modelling T ool

Aws A Magableh, Zarina Shukur and Noorazean Mohd. Ali
School of Computer Science and Information Technology, Universiti Kebangsaan Malaysia,
43600 Bangi Selangor, Malaysia

Abstract: The aspect-orientation 1s a complement for object-orientation. Thus, it would be logical to investigate
the adaptability of UML to aspect-orientation. This research focuses on investigating the Aspect-Ornented
UML (AOUML) approaches for understanding the benefits of a comprehensive framework for AOUMIL. Based
on this study’s review, it is evident that, of late, the complexity and size of systems have grown up, which
accumulatively have led to the manifestation of new concerns. Moreover, these new concerns have cut-cross
other concerns and core classes in the system by its nature. Due to this fact, the concept of Advance
Separation of Concerns (ASoC) has been put on the table of discussions and the need for an approach to model
and represent these crosscutting concerns (Aspect), which is responsible for producing, spreading and
tangling representation throughout the development life cyele, 15 vital. A proper databases have been searched
using the suitable keywords, which match this research questions as recommended by systematic review
process; this research has collected 468 studies and screened them to minimize the number of studies to 73,
which are more appropriate and directly related for this present study. The general scope of this research is to
model aspect (crosscutting concerns) using standard UML diagrams 2.4.1 (latest edition). UML behavioural
and structural diagrams have been implemented on the top of object-orientation concepts, 1t has not been meant
to be used to model aspect-orientation. Thus, this research has proposed a complete tailored framework that
represents aspect’s constructs using all UMI, diagrams. The objective of this position study is to investigate
the aspectual UML modelling tool which 1s currently being designed and implemented.

Key words: AOM, aspects, aspectual UUMIL. diagrams, aspect modelling, crosscutting concerns, aspect

representations, aspect-oriented UMIL,, Aspect]

INTRODUCTION

The needs for the advance Separation of Concerns
(S30C) are in demand during the software development
processes (Magableh and Kasirun, 2007). Therefore, a lot
of approaches have been proposed and used such as:
Subject-Orientation (SO), Feature-Orientation (FO) and
the most popular Object-Orientation (OQ), to represent
the concerns of the system. Due to the weakness of
object-oriented analysis and design approach, the
proposition in handling the crosscutting concerns
(Aspects) (Uetanabara et al., 2009), Aspect-Orientation
Analysis and design (AOAD) approach has been
proposed to focus on the crosscutting concerns and its
effect on multiple classes. In addition, the AOAD is
futher divided into Aspect-Oriented Requirement
Engineering (AORE), Aspect-Oriented Architecture
(AOA) and Aspect-Oriented Design Modelling (AODM).
All these fields of AOQ focus on efficiently handling the
Aspects throughout the software life cycle. However, the
most neural field 1s the modelling field.

In fact, quite a good number of researches have
been cammed on AODM. Some are based on
architectures View (Katara, 2002), aspect-oriented
language (Groher and Baumgarth, 2004,
Groher and Schulze, 2003), XML representation format
(Suzuki and Yamamoto, 1999), some other are based on
component engineering (Grundy, 2000) and component
views (Muller, 2004). Furthermore, the AODM using UMTI.,
Diagram 1s the most well-known techrique, as (UML) 1s
probably the most widely known and used modelling
notation (Ali et al., 2007b) which has drawn the attention
of alot of researchers.

UML 1s considered to be the most accepted design
modelling language in software engmeering and the
industry as it provides a powerful set of modelling
tools and diagrams (Groher and Baumgarth, 2004,
Asteasuain et al., 2008). Thus, the UML for aspect has to
be investigated similar to OO. Finally, there are many
propositions on Aspect-Oriented Design Modelling
(AODM) using UMI. approaches. However, there is a
lack of umform standards (Alburmi and Petridis, 2008,

Corresponding Author: Aws A. Magableh, School of Computer Science and Information Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
2182

J. Applied Sci., 12 (21): 2182-2194, 2012

Zhang, 2005). With its cwrrent state of the design level the
UML is unable to properly represent aspect-orientation
constructs and the crosscutting nature of the aspects
(Marco et al., 2008).

Tt is very important and vital to have a uniform
standard aspect-oriented modelling. Currently, there is a
lack of support for a unified aspect modelling in the
industry, as everyone uses their own selected approach
based on their needs, however, the possibility of
choosing a wrong/incompatible modelling approach is
there as sometimes the selection for the proper modelling
approach depends on the system size and complexity.
Additionally, if a project has to be transited to some other
developers/company then lack of the standard umform
modelling will be apparently a problem and will not be an
easy work to handle such transition. Practically, there is
a need to have a uniform standard aspect modelling
approach to preserve the maintainability and consistency
through out the software development.

Programming and modelling languages exist in a
relation of mutual support. Thus, this study focuses on
button-up technicue. Tt starts from the well-established
aspect coding languages level (Aspect]), which is a hot
programming topic nowadays (Zhang et al, 2009) and
moves backwards to design level to generate an
aspect-oriented TMIL constructs notation (aspectual
UML). As there is a lack of Aspectual design notations in
AODM for designing Aspect Oriented code (Aspect] in
this case) (Muley et al., 2010), this would mainly depend
on having a look at the coding constructs, then try to
implement it in a representational notation, to be used in
the design modelling level of the tool. As a result, the
level of encapsulation would be increased, not only at the
coding level but rather at design level too. Concurrently,
the level of consistency would be maintained at high level
as all the coding constructs would be denoted at design
phase in the first place (Kande, 2003).

BACKGROUND OF ASPECT ORIENTED
DESIGN MODELLING

Here, we are explained structured Systematic

to narrow down. A systematic literatire review/mapping
refers to the reassessment, evaluation and interpretation
of the all related available research and primary studies
that are relevant to clearly formulated questions, followed
by extracting and analyzing mformation included m
the review (Ramey and Rao, 2011). SLR 1s composed of
the following steps: (1) Systematic mapping planning (2)
Conduction of the search (3) Selection of the primary
studies and (4) analysis and map building. The four steps
and their output are depicted below in Fig. 1:

Step 1: Systematic mapping plan illustrates the plan that
have used to conduct the research. It consists of
three sub steps: (1) Goed formulation for the RQ
(2) Selection of the Databases and Resources and
(3) The Inclusion Criteria (IC) and Exclusion
Criteria (EC)

Step 2: Conducting the search 13 divided mto two sub
steps: (1) Choosing keywords and (2) Search
strings in databases. The completion step 2,
vields the final edition of the primary related
studies, using the proper keywords, with the
database related string searching format

Step 3: Selection of the primary studies, as a result of
applying the above keywords (step 2) on the
listed data sources (step 1), the research has
1dentified that the total number of primary studies
15 468. Furthermore, it has extracted the proper
and directly related studies, by removing the
duplication and redundancies and by reading the
abstract of the articles and the full text. As a
result, the research has concluded 73 primary
studies related to this research’s topic as shown
in Table 1

Step 4: Analysis and build mapping illustrates the
analysis carried out on the selected related
studies. Generally, the comparison criteria should
fulfill certain criteria such as standards and
guidelines (Shukur and Mohamed, 2008). These
criteria have been taken under the consideration

Literatuwe Review (SLR) (Ramey and Rao, 2011)
N
Step 1: Step 3:
. 2: 4-
Systematic C St;:p ;: N Selecting of Step 4:
mapping onducting the primary Analysis and
the search .
_ plan) studies
Oujput ut Ouﬁ)ut Ipput Ouﬁaut o
Systematic Primary Relative Mapping
maps studies studies study
documents documents documents

Fig. 1: Systematic literature review processes

2183

J. Applied Sci., 12 (21): 2182-2194, 2012

Table 1: Articles screening in numbers

Total references After excluded Total abstract After abstract Total firll-text
Research question retrieved duplicate screened screened screened Total included study Final included study
RO1 285 242 242 82 04 o4 o4
RO2 160 132 102 55 45 [\] [
RO3 23 16 13 10 4 4 3

to compare the existing UML modelling approaches
(Grundy, 2000; Ho et al., 2002; Stein et al., 2002;
Clarke and Baniassad, 2005; Filman, 2005a, b;
Jacobson and Ng, 2005; Reddy et al, 2006
Coelho and Murphy, 2006, Cottenier et al., 2007,
Katara and Katz, 2007, Klein et al, 2007,
Sharafi et al., 2010, Przybylek, 2010)

The selection of the criteria was not randomly done;
nstead 1t was based on critical factors such as: Language,
maturity, real example, complete framework, tool support,
Aspect] constructs and these criteria are shown in Fig. 2.

Figure 3 illustrates an idea on the connection
between the study areas of this research, m order to come
out with a new Aspectual UML modelling tool proposed
by this study.

As a result of this systematic literature review, the
research has finally gotten the direct related studies of
aspect-oriented modelling using UML diagrams and knew
where the literatwres have reached on this concern.
Moreover, by studying the well established AOP
language (Aspectl), latest UML supersttuctire and
infrastructure 2.4.1 and understanding the ability to
integrate both to be utilized in the modelling of Aspects
i the early stage of software life cycle, we have
concluded that the proposed ideas to work with a
complete Aspectual UMIL framework. This study is more
concerned with the tool supports of this research
proposition.

ASPECT-ORIENTED PROGRAMMING ELEMENTS
(RESULTS of BOTTOM-UP APPROACH)

AOP allows programmers to implement the concept
of separation of concerns. Also, it overcomes the problem
of code spreading over the core concerns, which is called
as code tangling and code scattering, the issue that the
00 could not be able to solve efficiently, when it
implements the crosscutting concerns. Additionally, AOP
solves these issues by implementing new modularity unit
called as Aspect. The AOP has achieved an apparent
growth in the industrial context and academic researches,
which has drawn to an interest in AO for all software life
cycle stages (Przybylek, 2010).

Code tangling defines as a module 13 implemented
that handles multiple concerns at the same time such as
logging and security as shown in Fig. 4 (Ramnivas, 2003).

Full and
complete
framework
support

Real example
illustration

Tool support Language

Aspect]
constructs

Fig. 2: Criteria categories

Code Scattering means that a single concern
implementation has been distributed in multiple modules
as shown in Fig. 5.

AOP 18 not meant to patch up bad design and 1t 1s not
a solution for poor design. Furthermore, it is not a new
complete design process. However, it provides additional
means to help the designer mn addressing the potential
expected future requirements, as well as solving the
designer’s problems (Ramnivas, 2003).

The Information System Development (ISD) has
many methodologies in the field to address different
software development phases (Baharom and Shukur,
2011), AOSD is one of them. Due to the realization for its
importance, the AOP is intended to be applied on AOSD
stages. Furthermore, AOP 15 considered to be as a
complement for (OO). AOP has been meant to represent
certain design concerns tended to be cut-cross the other
core functional concem in the context of AOSD. As per to
(Alam et al., 2009) there are many AOP such as Aspect],
AspectS and AspectML, of which the most popular 1s
Aspect]. Aspect] is the most de facto standard language
in the industry and that is why it has been selected to be
the base for this study. The Table 2 shows the
comparison between Aspect] and the other aspect
languages. Tt depicted that the Aspect] is the most well-
featured aspect language.

AspectJ syntactical construct: Majority of AOP has
invented a common constructs for crosscutting concerns

2184

J. Applied Sci., 12 (21): 2182-2194, 2012

Framework support and tools

and infrastructure

=

Study UML 2.4 superstructure

Consider researcher's works
on AOM using UML

Investigate all Aspect]
constructs to be modeled

1l

Aspectual UML modelling tool

Fig. 3: Connection between the study’s areas

Businesslogic

"

_—L ogging

/- Persistence
P

i

s

Fig. 4: Code tangling representation, Ramnivas (2003)

Table 2: Aspect programming feature comparison

Aspect AspectS AspectML
Aspects can be X I AspectML does not have
instantiated an aspects construct
Aspect inheritance % %
Nested aspects I x
Privileged aspects I x
Polymorphic pointcuts % % /
Polymorphic advice x x V
Advice on field access ¥ X NA

representation and capturing. These constructs are called
as join point, pointeut, advice, introduction and aspects.

Join point is a well defined point in the execution
code of the program; it would be a constructor call, normal
method call, data member assignments but not limited to

these only. Additionally, it has been categorized into:
Method call, method execution, constructor call,
constructor execution, static initializer execution, object
pre-imtialization, object mutialization, field reference, field
assignment, handler execution and advice execution.

Pointeut 1s a program construct that captures join
points, select join points and collect context at these join
points (target object), it 1s categorised as method call,
method execution, get, set, constructor call, constructor
execution, constructor initialization, constructor pre-
imtialization, static imitialization, handler, advice execution,
within pointcut, within code, cflow pointcut, cflow below
pointeut, this, target and args pointcut.

2185

J. Applied Sci., 12 (21): 2182-2194, 2012

Accounting

Internet
banking

O e SeY
LRSI
SREELRKK

Customer
care

Fig. 5: Code scattering representation Ramnivas (2003)

Teller
operations

Aspect
Advice
public aﬁé €Aspect {

Pointcut

before () : Execution (void account. credit (float)) { 4 Joint point
System.out.printin ("About to perform credit operation");
declare parents: Account implements bankingEntity;

declare warning: Call (void persistence.save (Object))

: "Consider using persistence.saveOptimized ()";

Introduction
«—

Fig. 6: Aspect coding sample

Advice 1s the code to be ejected and executed at a
jomn point that has been selected by a pointcut. This
advice might be a before-advice which runs prior to the
execution of the new code, after-advice which runs after
the new code is ejected and executed, around- advice,
which alters the core code execution.

Introduction 1s the static crosscutting instruction
that introduces some changes to the static hierarchy
of the core code, classes, interfaces and aspects of
the system; it directly helps the behaviour of the
system and helps to achieve the dynamic crosscutting as
well. For instance, it adds new data member to class, adds
new member function or changes the inheritance
hierarchy.

Aspect is the unit of modularization of Aspect] that
captures all these constructs. Tt contains the code that
expresses the waiving rules of pointcut, join points,
advices and mtroductions as shown in Fig. 6.

Benefits of AspectJ programming: Critics of AOP often
conwverse about the difficulty of understanding it. Indeed
it takes some time, patience and practice to master AOP.
However, the main reason behind the difficulty is simply
the individuality of the methodology. The benefits of
AOP actually far outweigh the perceived costs. Some of
these benefits are:

s Cleaner responsibilities of the individual module
¢ Higher modularization

+ Additional code reuse

» Reduced costs of feature implementation

In reality the flow of AOP (Aspect] m this case)
program is hard to follow, as a lot of concerns have been
weaved with the core system functionality. Moreover,
AQP is not about providing solution to the unsolved
problems; it 1s about providing better way of solving a

2186

J. Applied Sci., 12 (21): 2182-2194, 2012

specific problem with less effort and improved
maintainability. Finally, AOP is not considered as a
replacement of the Object-Oriented Programming (OOP) or
other procedural programming; AOP adds new additional

concepts to represent the crosscutting concerns.

CURRENT UML NOTATION ON
ASPECT-ORIENTATION

Modelling is the process of providing structure for
the problem, experiments to explore the solution; decrease
the development cost and reduces the mistakes that might
take place. Specifically, aspect-oriented modelling
demonstrates aspect and its constructs form the early
stage of development life cycle. The benefits of modelling
aspect are making the design more reusable, makes it
easier to enable the code generation, helps learning and
documenting aspects and aspects specification and the
most important point 13 modelling the aspect from the
requirement stage, design phase then implementation
makes the process and transitions consistent and
maintainable (Omar ef al., 2002). AOM includes modelling
tasks starting from requirements engineering via analysis
to design, this consider to be as an essential part of
AOSD.

Literature (Igbal and Allen, 2007) mnvestigates the
AOM 1ssues and misunderstood concepts. The literature
clarifies and identifies some misconception takes place
when AOM 18 bemng used. It has pointed out that the
there are many unsolved AOM issues that 15 due to the
nature of the aspect itself and its constructs. Aspects
have been represented as class-like formation, however,
the class 1s a construct for object-orientation and a lot of
principles such as, encapsulation, inheritance and
instantiation have been tied with it. Based on the above
factors, it has been found out that Aspect can not be
represented as a class as it can not be instantiated when
the user needs, however, it 1s mstantiated when the
system demeands. Moreover, Aspects do not maintain the
concept of encapsulation all the time as it accesses the
private data of its base class to perform some actions.
Additionally, Aspect’s children can not override the piece
of advices of the parent Aspect as its signature
designator is not unique. Finally, AOM has been
investigated and a lot of propositions have been
proposed by the researchers, some are based on
Theme/UMI. (Clarke and Bamassad, 2005), SUP
(Omar et al, 2001), CoCompose (Dennis and
Bergmans, 2002), Aspect at Design Time (ADT)
(Jose et al.,, 2000) and Aspect-Oriented UML modelling
which 1s the concern of this research.

Aspect-oriented UMI. modelling: Unified Modelling
Language (UML) is an object-oriented analysis and
design language from the Object Management Group
(OMG@G) that standardizes several diagraming methods,
including Grady Booch’s, Rumbaugh’s and Ivar
Jacobson’s. In addition, UML has become a standard
modelling language m the industry, as well as the most
well-established and commonly used by designers and
analysts (Ali et al., 2007h).

UML modelling extension mechanisms have been
categorized mto two types. The first one 1s the UML Meta
Object Faciity Metamodel (Heavy-weight) and the
second one is the Constructing TUML Profile
(light-weight).

UML Meta Object Facility Metamodel (MOF
metamodel) 1s referred to as heavy-weight extension. The
metamodel constructed can be as communicative as
needed. Tt is harder than constructing a UML profile and
does not have a lot of supportive tools as compared with
UML profile.

Constructing UML profile (light-weight) is usually
called as light-weight extension, because all the current
existing constructing UML profile extension techmques,
do not mmplement any new UML Meta-model elements.
Further, constructing TMI, profile extension techniques
are usually considered as predefined set of constraints,
tagged values, graphical representations and stereotypes.
Moreover, constructing UML profile extension method
supplements aspect based on the flexibility and
extendibility natwe of the standard UMI domain
modelling.

Grundy (2000), the Aspect-Oriented Component
Engineering (AOCE) focuses on recognizing a mixture of
portion or Aspects of an overall system. A component
offers services to other partner components or requires
from other components. Aspects are horizontal cut cross
through a system, which apparently would affect many
other components such as persistency and distribution.
Developers use components to represent Aspects with
different components capabilities in the software
development such as requirements engineering and
design. The AOCE proposes representation for Aspect
and its nature by providing a new framework for
describing and reasoning about component capabilities
from multiple perspectives.

Based on literatwre (Ho et al., 2002), it proposed a
UML all purpose transformer (UMLAUT) toolkit which
used the MOF UML mechanism extension to model
Aspects. Tt is an Aspect-Oriented UML models used to
build Aspect weavers for constructing detailed design
model from ligh level of abstraction. UMLAUT gives the
developer the ability to program the weavers at the level

2187

J. Applied Sci., 12 (21): 2182-2194, 2012

of UML Meta model. Additionally, The UMLAUT
provides the user with a general purpose representation
which can be reused for different function with specific
demands weaver that optimizes the weaving process
demonstrated by UMLAUT.

Stein et al. (2002), considers reviews one of the
light-weight UML extensions. It has been developed as a
design notation for Aspect]; it extends the existing UML
standard notations. Tt comes with a new production
Aspect] weaving process. However, it does not represent
all Aspect] constructs to be modelled as well as not all
UML diagrams have been used in the proposition, they
have focused on the class diagram.

Clarke and Baniassad (2005), Theme/UML. is used to
produce separate design models for each “theme™ elicited
from the Theme/Doc requirements phase and then it does
encapsulate the concern representing some kind of
functionality in a system. The Theme/UML is considered
to be a heavy-weight extension of the UML metamodel
version, as it adds some new elements to the standard
representation. Basically, the Theme/UMI. creates no
restrictions on the UMI. diagrams that might be used for
modelling. Nevertheless, package and class diagrams are
specifically used for structure moedelling and sequence
diagrams are used for behaviour modelling.

Filman (2005b) aims to model aspect independently
from the existing types of the aspect-oriented
programming languages. The Class diagrams are used to
express the structural dependencies and state the
machines model and the behavioural dependencies of
concerns and Aspects. The approach provides a
guideline on how to refine the modelling continually from
class diagram to the state of model machine. The
approach focuses on these UML diagrams only and did
not assume the modelling might take place for other
diagrams.

Jacobson and Ng (2005),
development method to represent aspects. Tt has been
realized by extending the UML 2.0 metamodel. AOSD with
Use Cases (AOSD/UC) implemented with an organized
processes that concentrate on the SoC throughout the
development life cycle. Starting from
requirements engimeerng (RE) with use cases to the
mnplementation and design phase with component
diagrams and class diagrams. While sequence diagrams
are used to model behavioural structure of the system.
Concerns are modelled using a use case stereotype and
the approach does not come with any support tools.

Filman (2005b), proposes a mix mode mechamsm
(heavyweight and lightweight), where it makes use of the
TUML profile extension to model different domain as well
as UML meta object facility model mechanism, by

Use case software

software

proposing new Meta object/notation. Tt proposes a Java
Aspect Component (JAC), which does not depend on any
platform. This TAC comes with new UML notations to
represent aspects and its implementation. It supports all
the steps of Aspect-Orientation development from its
design, to its implementation ending with the deployment.
This approach depends on adding stereotypes to classes
to implement aspects and non functional concerns.

Reddy et al. (2006), aspect-oriented class design
model includes of different Aspect models. Each one of
them explains an attribute that crosscuts the other models
including the primary one. The Aspect model and the
main models are combined to get an integrated view.
Composition approaches have been described that utilizes
two compositions; the first one 1s composition algorithm
and the second one 1s composition directives. Its
prototype tool supports default class diagram
composition.

Coelho and Murphy (2006) presents crosscutting
structure, which 1s usually done using two ways: (1) tree
views, which involve developers in combining information
across multiple views manually and (2) static structure
diagrams, which will probably suffer from extreme
graphical complexity. An active model 1s an approach that
attends to these problems, by presenting the right
crosscutting structure at the proper time. To control the
diagram complexity, the right information is determined
through automatic projection and abstraction procedures
that select representation elements. The model is
presented at the right time using two combinations. The
first one 1s a user-driven expansion operation that adds
more detailed info to the model and the second one 1s
through the interaction features that added by the end
user.

Cottenier et al. (2007) proposed a state diagram
extension specification to represent a new join point. The
interfaces included in a function invocations on the state
of the module instance. These specifications are not
identified for a specific Aspect, However, unclearly
describes the behavioural observation of the module.
Cottenier et al. (2007) have shown additionally how a join
point selection mechamsm is able to infer points smartly
which might be placed somewhere very deep mside the
implementation of a component. It refines the class
diagram and the composite structure to captwre the static
structure of the system. Tt uses the state machine
extension to represent the behaviours of the system.

Katara and Katz (2007), 1s using the architecture view
to group aspect designs. The architecture model provides
an aspect-oriented representation on software design
using UML. The model gives you the ability to analysis
the aspects as a viewpoint to observe the impact of

2188

J. Applied Sci., 12 (21): 2182-2194, 2012

adding/deleting Aspects in the model. Tt adds some new
stereotypes to model aspects such as <<Aspects>>,
<=Concerns>>, <<Bind>>, <<replace>> and <<Unify>>.

Klem et al. (2007) proposes an Aspect-Oriented UML
approach using the standard UML. Tt has not proposed
any new notation and it did not use the UMIL extension
ability, just to mamtain the standardization with no
changes. It 13 originally based on Message Sequence
Charts (M3C) a standardized scenario language. Tt
uses UMIL 2.0 sequence diagram. Indeed, no
extensions to the UML Sequence diagram have been
made; relatively a simplified meta model for
sequence diagram has been designed, where conformity
with the original UMI. Sequence diagram is accomplished
through model transformation in the supplementary tool
support.

Przybylek (2010) proposed aspect-oriented TUMI,
modelling Which is an extension establishing a new
package called AoUML, which consists of elements to
represent the primary AO concepts. It also proposes to
reuse elements from the UML 2.1.2 infrastructure and
superstructure specifications.

RESEARCH PROPOSITION: ASPECTUAL UML
TOOL

Aspectual UML modelling tool suite consists of
several integrated sub-tools and each consecutive one
works on the output received from the previously applied
sub-tool. Figure 7 shows AOP profile domain model of
this research, which illustrates all aspect constructs that
has been considered in this research modelling tool.

Figuwe & depicts the architecture of aspectual
modelling tool; it consists of several drawings modules
for 14 well know UML diagrams as shown in Fig. 9.

Then these drawings will be saved in Scalable Vector
Graphics (5VQ) file format, which is an XML based file
format for describing two-dimensional vector graphics.
SVG can describe three types
graphics (paths consisting of straight lines and curves),
images and texts. These graphics can be grouped, styled,

of graphics-vector

or transformed into different shapes using template
objects, clipping paths, nested transformations, alpha
masks and filter effects. SVG drawimngs can also be
dynamic, interactive, or animated. Animations may be
defined either by using embedded SVG ammation
elements, or through scripting. Other featiwes of SVG
include hyperlink support, scripting based on events
being based on XML and susceptibility to compression.
Some other similar works have been done by converting
the drawings into a PETAL file which 1s the extension
used by rational rose (Ali et al, 2007a) proposes a
proper extraction notation with a accurate and reliable
extraction process.

Based on this research approach, this SVG file will be
an input to any other tools that read this extension and
generate a drawing out of it; moreover, this file will be an
input to a model checker to check the consistency and
validity of the domain modelling.

This study modelling approach uses latest UML
edition 2.4.1, which have not been used to model Aspects,
as per the infrastructure and super structure of UML 2.4.1,
some notations are valid to be used to model aspects.
However, some other aspects constructs would not be

Has precedence of

Aspect
1 ¢ Name 1 has
o Is abstract
0.* 0.*
Pointcut Advice
1 1.*
¢ Name ¢ [s before
o Is abstract ¢ Is around
o Is after

Joinpoint

Fig. 7: AOP profile domain model

2189

J. Applied Sci., 12 (21): 2182-2194, 2012

Our aspectual tool

Y~

OOUML K—=> AOUML

N

drawing drawing
SVG file <

generation

V7
Fig. 8: Tool architecture
UML 2.4 diagram
</ \R

| Structure diagram | | Behavior diagram |

Class diagram
Objective diagram

Package diagram

~

Composite structure
diagram

Component diagram

yment diagram

g
=2
5
2

Profile diagram
Fig. 9: Aspectual UMIL diagrams

modelled efficiently; hence, this research has proposed
new notations to model aspects constructs.

This research model proposes new notations to
represent all kind of Aspect] constructs, to be modelled
from the early stage of software life cycle. Due to the fact
that Aspect] is the widely used aspect programming
language in the industry and due to the lack of modelling
support for Aspect], tlus research has proposed a new
heavy-weight UML extensions, to model all detailed

UseCase diagram
Activity diagram
State machine
diagram

Internet diagram

Sequence diagram
Comunication
diagram
Timing diagram
Interaction overview
diagram

constructs of Aspect], moreover, a lot of researches have
been carried on modelling Aspect] constructs, however,
majority of them have focused on one or more UMIL
diagrams and none of them have studied the applicability
of modelling the Aspect] constructs m all UML diagrams,
as well as the details of Aspect]. Figure 10 shows basic
print-screen of the tool.

By looking at the evaluation aspect of the proposed
tool and approach Foxley et al. (1997) suggest that the

2190

J. Applied Sci., 12 (21): 2182-2194, 2012

Fir Fde Custern Flements Melp Search: Toow 0%

Fig. 10: Print-screen of the tool

most common methods of measure the quality is
to lock at different kind of factors that affect the
quality and measure them separately. By applying
that on tlis research; comrectness, usability and
tractability will be measured toward the end of the
research.

ASPECTUAL UML TOOL CONTRIBUTION

Here, we highlighted the
contributions of this research. In addition, it explams the
and strengths of this
research, there are some significance and contributions of

this research proposed tool:

significance and

observation on weaknesses

¢ The tool makes use of the latest UML edition 2.4.1

* The tool gives the option to draw an OO notation as
well as AO modelling notations

* The tool represents all Aspect] detailed constructs

* The tool represents all Aspect] constructs m all UML
diagrams

¢+ The tool has the ability to transform the drawings
mto SVG extensions and makes use of this powerful
extension

¢ The tool provides a complete framework for
modelling general domain systems that has aspects
mmpeded in 1t

Tt is very normal that any tool has strengths and
weaknesses. Different observers have different opinions
and ways for looking at and evaluating systems.
However, there are certain strengths and weaknesses that
could be mentioned regarding the Aspectual tool. The
strengths are:

¢ The tool combines two different stages together, the
first one is the design and modelling stage the other
one 18 the implementation stage

» This tool will open rooms for more researchers and
students’ projects, since students will be able to refer
to this project and its report for their own benefits in
developing systems

» This tool makes use of the power of UML modelling
to come out with Aspectual UML drawings

+ This tool overcomes the issues of the current exciting
UML modelling tools, as majority of these tools such
as Rational Rose (Baharom and Shukur, 2011) and
MagicDraw do not provide the option to represent
crosscutting concerns (aspects)

The weaknesses of the tool are:

¢ Tt is not easy to use these kinds of tools, because
understanding the concept of aspect orientation
modelling requires extensive understanding

s Currently the tool supports English language only

¢ Tt does not support all the processes of software life
cycle such as requirement engineering

CONCLUSION

In conclusion, this research has identified that almost
all primary studies have similarities in their objectives.
Additionally, all of them are heading towards addressing
and modelling the crosscutting concerns (Aspects) using
UML whuch 15 the focus of RQ1. Furthermore, majority of
the studies were focused on extending the current UML
model and make use of the extendibility feature of UML.
Only few researches had proposed their own notations

2191

J. Applied Sci., 12 (21): 2182-2194, 2012

and extensions. The majority of the researches were
focusing on one or two diagrams of the UML; none of
them were addressing a complete framework. Moreover,
majority of them were not providing tools for their
propositions, they depend on the existing tools.
Furthermore, all the researchers had focused on the older
versions UML rather than the current UML edition, which
is UML 2.4. Moreover, none of the studies have focused
on the new Infrastructure specification and the
Superstructure specification of the adaptability and
compatibility of UML 2.4 with the proposed model. This
research believes that Aspect-Oriented programming
should be extended to the entire software development
life cycle. Each aspect of the implementation should be
declared during the design phase, so that there will be a
clear traceability from requirements through source code.
Finally, as a future works the tool will be tested using
module documentation-based testing or MD-test.

ACKNOWLEDGMENTS

This study has been funded by the faculty of
computer science and information technology in
University National Malaysia (UUKM). The Aspect-
Oriented systematic review has inspired us and opened
some new avenues for research. This research 13 currently
carrying on and has started on creating Aspectual UML
2.4 Modelling Approach, using the bottom up techmque,
to capture and represent all the crosscutting concerns
(Aspect) constructs and elements mcluding Aspect] as a
base for the study.

REFERENCES

Alam, F.E., I. Evermann and A. Fiech, 2009. Modeling for
dynamic aspect-oriented development. Proceedings
of the 2nd Canadian Conference on Computer
Science and Software Engineering, May 16-24, 2009,
Vancouver, Canada, pp: 143-147.

Albunm, N. and M. Petridis, 2008. Usmg UML for
modeling cross-cutting concerns in aspect oriented
software engineering. Proceedings of the 3rd

International Conference on Information and
Communication Technologies: From Theory to
Applications, April 7-11, 2008, Damascus, Syria,
pp: 1-6.

Ali, NH., 7. Shukur and S. Tdris, 2007a. A design of an

system for UML diagram.

Proceedings of the International Conference on

assessment class

Computational Science and Applications, August
26-29, 2007, Kuala Lampur, pp: 539-546.

Ali, NH., Z. Shukur and S. Idris, 2007b. Assessment
system for UML diagram using
notation extraction. Int. J. Comput. Sci. Network
Secur., 7: 181-187.

Asteasuain, F., B. Contreras, FE. FEstevez and
P R. Fillottram, 2008. Evaluation of UML extensions
for aspect oriented design. http://grise.upm.es/
rearviewmirror/conferencias/jiisicO4/Papers/7. pdf

Baharom, 3. and 7. Shukur, 2011. An experimental
assessment of module documentation-based testing.
Inform. Software Technol., 53: 747-760.

Clarke, S. and E. Bamassad, 2005. Aspect-Oriented
Analysis and Design the Theme Approach. Addison
Wesley, Boston, USA.

Coelho, W. and G. Murphy, 2006. Presenting crosscutting

class

structure with active models. Proceedings of the 5th
International ~ Conference on Aspect-Oriented
Software Development, March 20-24, 2006, New York,
pp: 158-168.

Cottenier, T., A. van den Berg and T. Elrad, 2007. Join
point inference from behavioral specification to
implementation. Proceedings of the 21st Furopean
Conference on Object-Oriented Programmimg, July
30-August 3, 2007, Berlin, Germany, pp: 476-500.

Dennis, W. and 1. Bergmans, 2002. Using a
concept-based approach to aspect oriented software
design. Proceedings of the 3rd International
Workshop on Aspect Oriented Software
Development, April 22-26, 2002, Enschede, The
Netherlands.

Filman, R.E., 2005a. Aspect
Development with Java Aspect Components. In:
Aspect Oriented Software Development, Filman, R.E.
(Ed.). Addison-Wesley, NY., USA.

Filman, R.E., 2005b. Expressing Aspects Using UML
Behavioral and Structural Diagrams. In: Aspect-
Oriented Software Development, Filman, R.E.,
T. Elrad, S. Clarke and M. Aksit (Eds.). Addison-
Wesley, New York, USA, ISBN-13: 9780321219763,
pp: 459-478.

Foxley, E., O. Salman and 7. Shukur, 1997, The automatic
assessment of 7 specifications. Proceedings of the
Conference on Integrating Technology into

Science Education: Working Group

Oriented Software

Computer
Reports and Supplemental, Uppsala, Sweden, June 1-
5, 1997, ACM, New York, USA., pp: 129-131,.

Groher, I. and 8. Schulze, 2003. Generating aspect code
from UUMI, models. Proceedings of 4th International
Workshop on AOSD Modelling with UM, October
2003, San Francisco, CA., USA .

2192

J. Applied Sci., 12 (21): 2182-2194, 2012

Groher, 1. and T. Baumgarth, 2004. Aspect-orientation
from design to code. Proceedings of the Workshop
on Aspect-Oriented Requirements Engineering and
Architecture Design, March 21, 2004, Lancaster, UK.

Grundy, T., 2000, Multi-perspective specification, design
and implementation of software components using
aspects. Int. J. Software Eng. Knowledge Eng.,
Vol. 10,

Ho, W., I. Tezequel, F. Pennaneac and N. Plouzeau, 2002.
A toolkit for weaving aspect oriented UM designs.
Proceedings of the 1st International Conference on
Aspect-Onented Software Development, April 22-26,
2002, Enschede, The Netherlands, pp: 99-105.

Igbal, 8. and G. Allen, 2007. Aspect-oriented modeling:
Issues and misconceptions. Proceedings of the 5th
International Conference Software Engmeering
Advances, August 25-31, 2007, French Riviera,
France, pp: 337-340.

Jacobson, I. and P.W. Ng, 2005. Aspect-Oriented
Software Development with use Cases. Addison-
Wesley, New York, ISBN: 9780321 268884, Pages: 418.

Jose, H., F. Sanchez, F. Lucio and M. Toro, 2000.
Introducing separation of aspects at design time.
Proceedings of the 14th European Conference on
Object-Oriented Programming, June 11-12, 2000,
NY., USA.

Kande, M., 2003. A concem-oriented approach to
software architecture. Ph.D. Thesis, Swiss Federal
Institute of Technology (EPFL). Lausanne
Switzerland.

Katara, M., 2002. Superposing UML class diagram.
Proceedings of the Workshop on Aspect-Oriented
Modeling with UMIL Model-Driven Development,
September 30, 2002, Germary.

Katara, M. and S. Katz, 2007. A concern architecture view
for aspect-oriented software design. Software Syst.
Model., 6: 247-265.

Klein, I., F. Fleurey and I. Jezequel, 2007. Weaving
Multiple Aspects m Sequence Diagrams. In:
Transactions on Aspect-Oriented Software
Development ITI, Rashid, A. and M. Aksit (Eds.).
Springer-Verlag, Berlin, Heidelberg, pp: 167-199.

Magableh, A A and Z.M. Kasiwrun, 2007. Collaborative
aspect-oriented requirements tool. Proceedings of the
3rd Malaysian Software Engineering Conference:
Striving for High Quality Software, December 3-4,
2007, Selangor, pp: 12-17.

Marco, M., C. Ams, S. Jaroslav and W. Jan, 2008.
Applying and evaluating AOM for platform
independent behavioral UM, models. Proceedings of
the AOSD Workshop on Aspect-Oriented Modelling,
March 31-April 04, 2008, Belgium, pp: 19-24.

Muley, K., U. Suman and M. Ingle, 2010. Representing
join point in UML using pointeut. Proceedings of the
International Conference on Computer and
Commumnication Technology, September 2010, Kerala,
India, pp: 557-561.

Muller, A., 2004. Reusing functional aspects: From
composition to parameterization. Proceedings of 5th
Aspect-Oriented Modeling Workshop (AOM) 1n
Conjunction with the UML, October 11, 2004, Lisbon,
Portugal.

Omar, A., T. Elrad and A. Bader, 2001. A UML profile for
aspect oriented modelling. Proceedings of OOPSLA
Workshop on Aspect Oriented Programming,
(AOP'01), USA.

Omar A., A. Bader and T. Elrad, 2002. Weaving with
statecharts. Proceedings of the Workshop on
Aspect-Oriented Modeling with TIMI., April 22-26,
2002, Ensehede, The Netherlands.

Przybylek, A., 2010. Separation of crosscutting concerns
at the design level: An extension to the UML
metamodel. Proceedings of the International
Multiconference on Computer Science and
Information Technology, October 18-20, 2010, Wisla,
Poland, pp: 551-557.

Ramey, J. and P. Rao, 2011. The systematic literature
review as a research genre. Proceedings of the
Conference Seminar on Professional Communication,
Aprnl 27-29, 2011, Portsmouth, UK.

Ramnivas, L., 2003. Aspect] in Action: Practical
Aspect-Oriented Programming. Manning
Publications Co., Greenwich, Greater London, UK.,
[SBN-13: 9781930110939, pages: 481.

Reddy, R., S. Ghosh, R. France, G. Straw and
I.M. Bieman et al., 2006. Directives for Composing
Aspect-Oriented Design Class Models. In:
Transactions on Aspect-Oriented Software
Development I, Rashid, A. and M. Aksit (Eds.).
Springer, New York, USA., ISBN-13: 9783540329725,
pp: 75-105.

Sharafi, Z., P. Mishams, A. Hamou-Lhad) and
C. Constantinides, 2010. Extending the UMIL
metamodel to provide support for crosscutting
concerns. Proceedings of the 8th ACTS International
Conference on Software Engineering Research
Management and Applications, May 24-26, 2010,
Montreal, QC., Canada, pp: 149-157.

Shukur, 7. and N.F. Mohamed, 2008. The design of
ADAT: A tool for assessing automata-based
assignments. J. Comput. Sci., 4: 415-420.

Stein, D., 8. Hanenberg and R. Unland, 2002. An UML
based aspect-oriented design notation. Proceedings
of the 1st International Conference on Aspect-
Oriented Software Development, April 23-26, 2002,
Enschede, The Netherlands.

2193

J. Applied Sci., 12 (21): 2182-2194, 2012

Suzuki, I. and Y. Yamamoto, 1999. Extending UML with ~ Zhang, G., 2005. Towards aspect-oriented class diagrams.

aspects: Aspect support in the design phase. Proceedings of the 12th Asia-Pacific Software
Proceedings of the Workshop on Object-Oriented Conference on IEEE Computer Society Engineering,
Technology, June 14-18, 1999, Lisbon, Portugal, December 15, 2005, Washington, DC., USA.,
pp: 299-300. pp: 763-768.

Uetanabara J., P. Parreira, A.Lazanha, R. Camargo and Zhang, T.. Y. Chen, G. Liuand H. i, 2009. An aspectual
R. Penteado, 2009. A preliminary comparative study state model and its realization based on AQP.
using UML-AOF-A UML Profile for aspect-oriented Proceedings of the WRI World Congress on Software
frameworks. Proceedings of the 8th ACM on Engineering, vol 3, May 19-21, 2009, Xiamern, Fujian,
Aspect-Oriented Software Development, March 2-6, China, pp: 163-166.

2009, Charlottesville, Virginia.

2194

	2182-2194_Page_01
	2182-2194_Page_02
	2182-2194_Page_03
	2182-2194_Page_04
	2182-2194_Page_05
	2182-2194_Page_06
	2182-2194_Page_07
	2182-2194_Page_08
	2182-2194_Page_09
	2182-2194_Page_10
	2182-2194_Page_11
	2182-2194_Page_12
	2182-2194_Page_13
	JAS.pdf
	Page 1

