——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Journal of Applied Sciences 12 (21): 2195-2201, 2012
ISSN 1812-5654 / DOL 10.3923/jas.2012.2195.2201
© 2012 Asian Network for Scientific Information

Heavy-Weight and Light-weight UMI. Modelling Extensions of Aspect-Orientation in the

Early Stage of Software Development

Aws A Magableh, Zarina Shukur and Norazean Mohd Ali
School of Computer Science and Information Technology, Universiti Kebangsaan Malaysia,
43600 Bangi Selangor, Malaysia

Abstract: Aspect-Orientation and Object-Orientation complement each other in a number of aspects. Hence,
it is imperative to investigate level of adopting Unified Modelling Tanguage (UML) by the Aspect-Orientation.
This study employed a systematic literature review to examine the approaches of Aspect-Oriented UML
(AOUML). The rapid growth of complexities of systems, of late have eventually paved way for the emergence
of new concerns. In fact these new concerns have cut-cross other concerns and core classes in the system by
their nature. Therefore, it is crucial to focus on the concept of crosscutting concerns (Aspect), throughout the
whole development life cycle, as they are accountable for generating, disseminating and interweaving
depictions. The scope of this study 1s to depict and examine the current state of art of Aspect-Orientation
modelling using UML. The UML diagrams have been umplemented on the top of Object-Orientation concepts,
it has not been meant to be used to model Aspect-Orientation. Thus, the motivation of this study is to propose
a complete tailored formworlk that represents Aspect’s constructs using all UML diagrams based on Aspect]
constructs. The objective of this present study 1s find out the shortenings, lack of support, advantage and
disadvantage of the existing well-known approaches of Aspect Modelling based on a carefully selected,
evaluation and compression criteria. The examination and analysis have revealed that there are some
deficiencies of Aspect representation in the early stage of software development, while using the existing UML.
We have concluded that extensive research has to be carried out, for us to get a complete comprehensive
framework modelling approach that covers all UML diagrams, rather than just a few, moreover we suggest that
the assumption of modelling extensions have to depend on a reliable base.

Key words: Aspect-oriented modelling, crosscutting concerns, aspect representations, aspect-oriented UML,

aspect], aspect-oriented programming, aspect-oriented software development

INTRODUCTION

Software reusability is a portion of code that can be
reused with other systems with minor or no modification.
This indicates building a system, by integrating existing
pre-engineered components.
classes reduce implementation time board (Zakana ef al.,
2002). OO (Object-Orientation) promised to improve the
software reusability by using different kind of techniques
such as inheritance and polymaorphism. Tnability of the OO
paradigm to address the entire separation of concerns
concept 1s one of the reasons that reduce software reuse
in OO (Zakaria et al, 2002). In the object-orientation
programming concepts, systems are expressed as a
collection of incorporated classes and class’s instance
(objects). However, usually the complex system and sub
systems have some features that naturally cut cross other
classes, components or modules (core classes) which lead

Reusable modules and

accumulatively to increase the level of dependencies
among these elements, when the dependencies are high,
the reusability is low. Thus, in the OO, these crosscutting
components (Aspects) are not represented in objects. All
these are leading to have the aspect-orientation concepts
on board (Zakaria et al., 2002).

Aspect-Orientation (AO) 1s not considered as a
replacement for Object-Orientation (OO), moreover, AQO
concept is mainly focused on Aspect-Orientated
Programming (AOP), with less attention paid to the early
stage of Aspect-Oriented Software Development (AOSD)
such as, design and modelling (Laddad, 2002).

AOP allows programmers to implement the concept
of separation of concerns which is so important once it
comes to software development processes (Magableh and
Kasirun, 2007). Also, AOP overcomes the problem of code
spreading over the core concerns, which is called as Code
Tangling and Code Scaftering. Nevertheless, OO is

Corresponding Author: Aws A. Magableh, School of Computer Science and Information Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia

2195

J. Applied Sci., 12 (21): 2195-2201, 2012

incapable of efficiently solving this issue, when it
implements the crosscutting concerns. Additionally, AOP
solves these 1ssues by implementing new modularity unit
called as Aspect. The AOP has achieved a wvery
considerable growth in the industrial environment and
academic researches, which has led to an interest in AO
techniques for all software life cycle stages
(Przybylek, 2010).

Due to the importance and usability of AOP, it has
been extended to cover the rest of software development
stages. In fact, currently there are many AOM
approaches, however, the most well-known and
established approaches are those capable of handling
aspect modelling using UML, because UML is the most
popularly used modelling language tool in the industry
(Al et al, 2007). However, there 1s a lack of uniform
standards. With the current state, TUML is not capable of
representing properties of AQ constructs and the
crosscutting nature of the aspects, at the design level
(Grundy, 2000).

UMI. modelling extension mechanisms have been
categorized into two types. The first one is the TUMIL
Meta Object Facility Metamodel (Heavy-weight) and
the second one 1s the Constructing UML Profile
(light-weight). The UML Meta Object Facility Metamodel
(MOF metamodel) is referred as heavy-weight extension.
The metamodel constructed can be as communicative as
needed (Rwm et al., 2009). Constructing the MOF
metamodel is harder than constructing a UM profile and
does not have enough supporting tool as compared with
UML profile. Whereas, the second type UML Profile
(light-weight) 1s usually called as light-weight extension
because all the existing UMIL profile extension
construction techniques do not implement any new UML
Meta-model elements. Constructing UML profile
extension techniques are usually considered to be
predefined set of constraints, tagged values, graphical
representations and stereotypes. Constructing TIMIL
profile extension method supplements aspect based on
the flexibility and extendibility nature of the standard
UML domain modelling (Przybylek, 2010).

The objective of this study is to provide a review on
the current existing Aspect-Oriented Modelling
approaches using Unified Modellng Language.
Moreover, the study aims to provide some carefully
selected evaluation and comparison criteria to compare
the approaches against, which shows the lunitation of
these Aspect-Oriented Modelling approaches. Finally,
this study is an eye-opening on the improvement that
could take place to enhance the existing Aspect-Oriented
Modelling Approaches such as taking all Aspect]
constructs and all UML diagrams m consideration.

EVALUATION AND COMPARISON CRITERTA

Here, the selected AOUML modelling approaches are
compared and contrasted. The core idea of this
comparative analysis is to identify the gaps in the field
and to set the platform to address those gaps by
answering the research questions. This will enable us to
unambiguously depict the approach to be employed for
assembling the criteria catalogue and to describe a general
narrative schema. The procedural rationalization, which
follows the criteria design and assemblage, offers an
essential platform for executing an extensive analysis of
existing AOUML Modelling approaches. While
performing the analysis we will make sure that none of the
measurable criteria are omitted. Furthermore, the more
clearly defined criteria and the apt measurement resources
are not also excluded. We have illustrated the apparent
catalogues for these criteria; generally, the comparison
criteria should fulfil certamn level of standardization and
guidelines (Shukur and Mohamed, 2008) as follows:

* Language specification (I.S): This type depicts few
principles associated with the UML modelling
languages. The UML Modelling Language Version
(UMLMIV) is used by a particular approach, which
indicates whether the approach uses latest version of
UML or not, the UML edition numbering 1s mdicator
of this factor. The Extension Mechanism (EM)
articulates the UMI. extension employed by a
particular approach, precisely this factor specifies
whether the extension 13 Light-Weight (LW) or
Heavy-Weight (HW) and the mdicators are either
HW or LW. Diagram Type (DT) identifies the TMI.
diagrams incorporated 1n the extension of a particular
approach and the name of the diagram is the indicator
of this factor

s AspectJ constructs/syntax (AJC): This is a very
significant criteria, as far as this study is concerned,
because we are going to investigate the complete list
of Aspect] comstructs, which are widely used and
well-recognized in the Aspect] languages in the
industry to execute reverse engineering (button-up).
This extensive study will enable us to escalate the
reliability, level of understanding and stable
changeover from one stage to the other (Kande et al.,
2002). The criteria have been inspired from Laddad
(2002).The full or partial support indicates the values
of this factor

+ Maturity issues (MT): This catalogue indicates the
capabilities of the selected UML Aspect modelling
approaches. Even though there are a lot of
approaches available, this study has focused only

2196

J. Applied Sci., 12 (21): 2195-2201, 2012

the most popular and recognized approaches, which
have drawn the attention of scholars (Reddy ef al.,
2006). This factor constitutes the maturity of the
Modelling Examples (ME), which 15 employed to
exhibit the dependability of the proposed modelling
and the maturity of the Application in Real-World
Projects (ARWP), which 1illustrates the applicability
of the approach in realistic world

¢+ Tool support (TS): This category emphasizes a
number of criteria, which mainly focus on a tool
support for the selected approaches. This catalogue
is further classified as Modelling Support (MS), Code
Generation (CG) and Model Kemel Extraction (MKE)

+ Complete framework support (CFS): This factor
highlights a composition of other factors. We call an
approach as a complete framework, if 1t captures all
the Aspect] constructs using all UML diagrams 2.4
{(not only few) and has a comprehensive tool support
for auto Aspect] generation and model kemel
extraction in to text file such as Petal file

LITERATURE-BASED SURVEY

The Aspect-Oriented UMI modelling approaches are
bifurcated into as constructing UMIL profile and TTMI,
Meta Model Extension. Principally, constructing ML
profile extension 1s called as light-weight extension. This
15 due to the fact that all the existing constructing UML
profile extension techmques, do not apply any novel
UML Meta-model elements. Furthermore, the constructing
UML profile extension technmiques are generally
recognized as a predefined set of limitations, marked
values, graphical representations and typecasts.
Consequently, the constructing UML profile extension
technique enhances the aspect, depending on the
adaptability and extensibility of the standard UMIL domain
modelling (Przybylek, 2010). The second category UMI.
Meta Model Extension signifies the fundamental rules and
norms for constructing the domam conceptual models to
the Meta Model. The UML Meta Model Extension 1s
recogmized as model of a modelling language. Furthermore
this category 1s a heavy-weight extension, due to the
capability of proposing novel UML Meta models to
signify the aspects and their crosscutting nature
(Rui et ai., 2009). Few studies of AOUMI modelling have
revealed that, there are a total of fourteen, matured and
well-established approaches.

Implementation of software components using aspects:
The Aspect-Oriented Component Engineering (AOCE) is
aimed at distinguishing an assortment of slices or aspects

from a system. A component is capable of providing
services to other components or will get the services form
1ts counterpart. Fundamentally, the aspects impact a lot of
other components that are acknowledged by breakdown
processes, such as perseverance and allocation. Further
more aspects are employed by developers to illustrate
various perceptions on the capabilities of components
during requirements engmeerng and design. The AOCE
depicts the aspect and its details. Tt offers a novel
framework for the purpose of illustrating and analyzing
the potentials of component from different angles
{Grundy, 2000).

A toolkit for weaving aspect-oriented UML design: UML
All Purpose Transformer (UMLAUT) toolkit 1s a different
kind of tool used for the MOF mechanism. It is an aspect
oriented UMIL model employed for -effortlessly
constructing explicit weavers for generating high-level
comprehensive design models. The UMLAUT facilitates
the developers to program the weavers at of UML Meta
mode level. Tt offers an extendible and reusable general
purpose operator for various applications with definite
needs. All the AO designs might be developed with an
application specific weaver that optimizes the weaving
process confirmed by UMLAUT (Ho et al., 2002).

An UML-based aspect-oriented design notation for
aspectJ: This is light-weight UML extensions intended to
be a design notation for Aspect]. Basically it broadens
the current UMIL standard notations and proposes a
novel Aspect] weaving process (Stein et al., 2002).

Theme: An approach for aspect-oriented analysis and
design: Theme/UML is used to generate distinct design
models for each “theme” that evokes from the
requirements phase later it summarizes the concerns,
which signify some kind of functionality in a system. The
Theme/UMI, is recognized as a heavy-weight extension of
the UML metamodel version, due to its capability of
augmenting novel elements to the basic representation.
Fundamentally, the Theme/UMT, will not restrict the TUMI,
diagrams, which are used for modelling. On the other
hand, package and class diagrams are exclusively used for
modelling structures, whereas the sequence diagrams are
employed for modelling behaviows (Clarke and
Baniassad, 2005).

Weaving with state charts: This 15 aimed at
independently modelling an aspect from a specific type of
aspect-oriented programming language. Here the
structural dependencies are expressed by class diagrams.
This approach also sigmfies the machines model and the

2197

J. Applied Sci., 12 (21): 2195-2201, 2012

behavioural dependencies of concerns and offers a
directive to constantly enhance the modelling from class
diagram to a prototype (Elrad et al., 2005).

Aspect-oriented software development with use cases:
The significance of the use case driven software
development method has been recognized by expanding
the UML 2.0 metamodel. The Aspect-Oriented Software
Development with Use Cases (AOSD/UC) constitutes an
efficient process, which is capable of separating the
concerns from the entire software development life cycle.
In case of the design phase, the component diagrams are
converted into class diagrams, while sequence diagrams
are employed to model the behavioural features.
Furthermore, the AOSD/UC models the concerns with the
help of use case slices stereotype and lacks support tools
(Tacobson and Ng, 2005).

Aspect-oriented software development with JAVA aspect
components: This indicates a hybrid mechanism, where it
amalgamates the UUMIL., profile extension and the abilities
of UML, to produce various domain models and TIMI,
Meta object Facility model mechamsm, by proposing new
Meta object/notation. It proposes a platform dependent
TAVA Aspect Component (TAC). The JAC comprises
novel UML notations. Tt supports all the steps of Aspect-
Orientation development, which ranges from design, to
deployment. This approach employs the UML profile
mechanism to design aspects by augmenting stereotypes
to qualify classes implementing aspects and non
functional concerns (Pawlak et ai., 2005).

Directives for composing aspect-oriented design class
models: Aspect-Oriented class design model comprises a
set of aspect models and a primary model. Each aspect
model depicts a attribute that crosscuts the essentials in
the primary model. The aspect and primary models are
aimed at obtaining an incorporated design view. Tt
characterizes a composition method, which employs
composition algorithm and decree, where the former 1s
used when the default composition algorithm is known or
likely to produce erroneous models. The prototype of this
approach facilitates the composition of default class
diagram (Reddy et al., 2006).

Presenting crosscutting structure with active models:
This presents crosscutting structure, which 1s generally
carried out using two means such as: (2) tree views, which
enables the developers to manually combine information
across numerous views and (2) static structure diagrams,
which might be probably victimized by the mtense
graphical intricacy. An active model 1s an approach, which

addresses these issues by introducing the accurate
crosscutting structure at the appropriate time. “The right
information 18 determined through automatic projection
and abstraction operations that select elements and
relationships likely to be of interest and that abstract
those elements and relationships to control the diagram
complexity when too meny similar cases occur. The
information 1s presented at the right time through a
combination of a user-driven expansion operation that
adds detail to the model and interaction features that
show some mformation only on demand by the user”
{Coelho and Murphy, 2006).

Join point inference from behavioural specification to
implement: This presents a novel join pomt selection
mechamsm depending on the condition of machine
specifications. The interfaces of a system encompass the
requirement of the effects of method approved on the
state of the module instance. This requirement does not
describe the potential aspects, but explicitly describes the
apparent behaviour of the module. We have illustrated the
capability of a smart join point selection mechanism to
conclude pomts that might be located deep mside the
implementation of a module and to infer the particular
pointeut that is totally articulated in terms of its
specification element. Tt enhances the class diagram and
the composite structure to obtain the static structure of
the system and employs the machine extension to signify
the behaviours of the system (Cottenier et al., 2007).

A concernarchitecture view for aspect-oriented software
design: The concern architecture model 1s employed to
cluster aspect designs in the context of software
architecture. It offers an aspect-oriented perception while
designing software. This model can be also viewed in the
context of aspect analysis for analyzing the influences of
the modifications or adaptabilities in concerns to be
addressed by aspects. Tt includes a number of novel
stereotypes to model aspects such as:
<<Aspects>>,<<Concermns=>>, <<Bind>>, <<replace>> and
<<Unify>> (Katara and Katz, 2007).

Weaving multiple aspects in sequence diagrams: This
has mtroduced an Aspect-Oriented UML approach using
the standard UMIL.. However, it has not proposed any new
notation and has not used the ability of ML extension
assuming to maintain the standards. Furthermore, it is
originally based on Message Sequence Charts (MSC) a
standardized scenario language and employs the UML 2.0
sequence diagram. In fact, no extensions are added to the
UML Sequence diagram; instead a simplified Meta model
for Sequence diagram has been designed, which

2198

J. Applied Sci., 12 (21): 2195-2201, 2012

complies with the original UMI, Sequence diagram by
converting model in the supplementary tool support
(Klem et al., 2007).

Extending the UML metamodel to provide support for
crosscutting concerns: Tt has presented an extension to
the UML metamodel to unambiguously obtain the
crosscutting concerns. It introduces an autonomous
means to any programming language and cross platform.
The newly produced metamodel can be represented in
standard XMI format, moreover it lacks own tool to
llustrate the modelling; however it employs the current
CASE teools to read this XML format. This
language-independent aspectual description can facilitate
model transformations that are significant to software
development and maintenance, such as forward
engineering, reverse engineering and reengineering
(Sharafi et ai., 2010).

Separation of crosscutting concerns at the design level:
an extension to the UML metamodel: Aspect-Oriented
UMIL Modelling has proposed an extension by instituting
a novel package called as AoUML, which comprises
elements that signify the primary AC concepts such as:
aspect, advice, pointcut, parent declaration, introduction
and crosscutting dependency. Tt has also proposed reuse
elements from the UML 21.2 mfrastructure and
superstructure specifications (Przybylek, 2010).

RESULT ANALYSIS

Table 1 depicts the analysis and the evaluation based
on this study selected criteria. Tt shows that none of the

Table 1: Evaluation and comparison criteria of different studies

most used (swrveyed) approaches did use the latest UMI,
editions 2.4 and it implicitly shows that none of these
have tried to improve the proposed approach to fit the
latest UML edition.

Table 1 gives an idea that some of these approaches
depend on the UML edibility to be extended to model
different domain model (lightweight), some more used new
notations (heavyweight), some did not amend the
standard UML and tired to use it as is and this is what
Klein proposed. Pawlak tried to propose a use of both
UML extensions.

Table 1 depicted that only few types of UMIL
diagrams have been used by either LW or HW extensions.
Majority of the approaches focused on proposing an
extension to model aspects using class, sequence
diagrams. Some more tried to use communication, package
and use case diagrams. It has been concluded that none
were focused on the whole UUMIL diagrams as one
framework and none proposed a complete set of aspect
modelling notation using all UML diagrams.

Table 1 explains explicitly that some of the
approaches are using Aspect] as a baseline for modelling
aspects. However, none of the approaches proposed a
complete modelling set for all Aspect] detailed constructs.

Table 1 addressed the maturity concerns of the
approach. Maturity has been measured by providing a
modelling example and that example being a useful
application mn the real life. As stated in Table 1, some of
these approaches have used a modelling example to
demonstrate their proposition and some other have not
done that. For those who have done it, some approaches
provided too easy and duplicated examples and some
other provided too complicated examples which makes it
so hard to ready, understand and make use of it.

Criteria

LS MI s
References UMLMLY EM DT AJC ME ARWP MS CG MKE
Ho et al. (2002) 1.1 HW Class Partial N N N N N
Grundy (2000) 1x Hw Class, component Partial Y N N N N
Clarke and Baniassad (2005) 1x Hw Sequence, class, package Partial Y Y Y N N
Elrad et ai. (2005) 1x Lw State, class Partial Y N Y N N
Stein et af. (2002) 1.x W class, collaboration Partial Y N Y N N
Pawlak et al. (2003) 1.x LW/HW Class Partial Y Y Y Y N
Coelho and Murphy (2006) 2.0 HW Class Partial Y N Y N N
Jacobson and Ng (2005) 2.0 Hw Use case, sequence, communication, Partial Y Y Y N N

component

Reddy et al. (2006) 2.0 Hw Package, class Partial Y N Y N N
Clattenier et af. (2007) 2.0 W Sequence, state, class, package Partial Y Y Y Y N
Katara and Katz (2007) 2.0 W Package Partial Y N N N N
Klein et ai. (2007) 2.0 N/A sequence Partial Y N Y N N
Przybylek (2010) 2.2 Hw class, package Partial N N N N N
Sharafi et af. (2010) 2.3 LW sequence, class Partial Y Y N N N

AJC: Aspect] constructs, MT: Maturity issues, TS: Tool support, UMLMILV: UML modelling language version, EM: Fxtension mechanism, DT: Diagram
type, AJC: Aspect] constructs, ME: Modelling examples, ARWP: Application in real-world projects, M3: Modelling support, CG: Code generation, MKE:
Moadel kemel extraction, LW : Light-weight, 1.8: Language support, HW: Heavy-weight, ¥: Yes, N: No

2199

J. Applied Sci., 12 (21): 2195-2201, 2012

Finally, Table 1 shows that majority of the
approaches did not propose their own modelling tool,
they used already existing tools and plug-in. That leads to
lack of support for Aspect] code generation, modelling
extraction into XML format such as SVG.

After the analysis and brainstorming took place on
the result of this study, it has concluded that there some
limitations which have to be addressed by the future
researches. This study has proved that none of the
existing approaches is based on the latest UML 2.4
edition. Additionally, it has been shown that majority of
the existing approaches are based on some UML diagrams
to represent and model Aspects and none of them have
came out with a complete set of modelling notations for all
UML diagrams and some UUML diagrams such as timing
diagrams have not been put on the table of the discussion
vet. Finally all the approaches have provided some partial
support to model Aspects based on Aspect] detailed
constructs. This study has opened new wvenue for
research to see the ability to provide a complete
Aspectual UML 2.4 modelling framework based on
Aspect] detailed programming constructs to maimtain the
constancy and tractability in all Aspect-Oriented Software
Development.

CONCLUSION

In this study, we had reviewed different Aspect-
Oriented UMIL modelling approaches. Additionally,
perspectives of various authors had been elucidated and
analysed. Moreover, we had studied the UMIL extension
mechanisms provided to model aspects using UML. We
had analyzed the surveyed approaches by selecting some
common and critical factors and had presented in a
tabulated format for clear understanding and readabality.
Each and every one of these selected approaches had
been evaluated based on this study analysis criterion.
Finally, we had found out that UML with its current state
1s unable to efficiently represent aspects, moreover, not all
approaches depends on Aspect-Oriented programming to
model aspects, majority of these approaches do not
represent all aspect-oriented programming using all TTMT,
diagrams rather they focus one class diagram, sequence
and state diagrams, which should not be enough to
effectively represent constructs of the aspect i the early
stage of software development.

REFERENCES

Ali, NH., Z. Shukur and S. Idrs, 2007. A design of an
assessment system for UML class diagram.
Proceedings of the International Conference on
Computational Science and Applications, August
26-29, 2007, Kuala Lampur, pp: 539-546.

Clarke, S. and E. Baniassad, 2005. Aspect-Oriented
Analysis and Designn The Theme Approach.
Addison-Wesley, New York, ISBN: 9780321246745,
Pages: 366.

Coelho, W. and G. Murphy, 2006. Presenting crosscutting
structure with active models. Proceedings of the 5th
International Conference on Aspect-Oriented
Software Development, March 20-24, 2006, New Yorl,
pp: 158-168.

Cottenier, T., A. van den Berg and T. Elrad, 2007. Join
point inference from behavioral specification to
implementation. Proceedings of the 21st Furopean
Conference on Object-Oriented Programming, July 30-
August 3, 2007, Berlin, Germany, pp: 476-500.

Elrad, T., O. Aldawud and A. Bader, 2005. Expressing
Aspects Using UML Behavioral and Structural
Diagrams. In: Aspect-Oriented Software
Development, Filman, RE., T. Elrad, 5. Clarke and
M. Aksit (Eds.). Addison-Wesley, New York.

Grundy, T., 2000. Multi-perspective specification, design
and implementation of software components using
aspects. Int. J. Software Eng. Knowledge Eng.,
Vol. 10,

Ho, W., I. Jezequel, F. Pennaneac and N. Plouzeau, 2002.
A toolkit for weaving aspect oriented UM designs.
Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, April 22-26,
2002, Enschede, The Netherlands, pp: 99-105.

Jacobson, I. and P.W. Ng, 2005. Aspect-Oriented
Software Development with use Cases. Addison-
Wesley, New York, ISBN: 9780321268884, Pages: 418.

Kande, M., J. Kienzle and A. Strohmeier, 2002. From AOP
to UML: Towards an aspect-oriented architectural
modeling approach. http:/infoscience. epfl.
ch/record/534711/files/TC TECH REPORT 200258 pdf

Katara, M. and S. Katz, 2007. A concern architecture view
for aspect-oriented software design. Software Syst.
Model., 6: 247-265.

Klein, I., F. Fleurey and JTM. Jezequel, 2007.
Weaving multiple aspects in sequence
diagrams. Trans. Aspect-Oriented Software Dev.,
4620: 167-199.

Laddad, R., 2002, Aspect] in Action: Practical Aspect-
Oriented Programming. Manmng Publications,
Greenwich, CT., USA.

Magableh, A.A. and Z M. Kasirun, 2007.
Collaborative aspect-oriented requirements tool.
Proceedings of the 3rd Malaysian Software
Engineering Conference: Striving for High
Quality Software, December 3-4, 2007, Selangor,
pp: 12-17.

2200

J. Applied Sci., 12 (21): 2195-2201, 2012

Pawlak, R., L.. Seintuier, I.. Duchien, I.. Martelli, F. Legond
and G. Florin, 2005, Aspect oriented software
development with TAVA spect
Proceedings of the 4th International Conference on
Aspect-Oriented Software Development, March
14-18, 2005, Chicago, Tllinois, USA.

Przybylek, A., 2010. Separation of crosscutting concerns
at the design level: An extension to the UML
metamodel. Proceedings of the International
Multiconference on Computer Science and
Information Teclnology, October 18-20, 2010, Wisla,
Poland, pp: 551-557.

Reddy, R. S. Ghosh, R. Trance, G. Straw and
IM. Bieman et al., 2006. Directives for Composing
Aspect-Oriented Design Class Models. In:
Transactions on Aspect-Oriented — Software
Development I, Rashid, A. and M. Aksit (Eds.).
Springer, New York, USA., ISBN-13: 9783540329725,
pp: 75-105.

Rui, W., M. Xiao-Guang, D. Z1-Ying and W. Yan-Ni, 2009.
Extending UMI, for aspect-oriented architecture
modeling. Proceedings of the 2nd International
Workshop on Computer Science and Engmeering,
October 28-30, 2009, Qmgdao, pp: 362-366.

componernts.

Sharafi, 7., P. Mirshams, A. Hamou-Lhad] and
C. Constantinides, 2010. Extending the UMIL
metamodel to provide support for crosscutting
concerns. Proceedings of the 8th ACIS International
Conference on Software Engineering Research
Management and Applications, May 24-26, 2010,
Montreal, QC., Canada, pp: 149-157.

Shukur, Z. and N.F. Mohamed, 2008. The design of
ADAT: A tool for assessing automata-based
assignments. J. Comput. Sci., 4 415-420.

Stein, D., 5. Hanenberg and R. Unland, 2002. An UML
based aspect-oriented design notation. Proceedings
of the 1st International Conference on Aspect-
Oriented Software Development, April 23-26, 2002,
Enschede, The Netherlands.

Zakaria A, H Hosny and A. Zeid, 2002, A UML extension
for modeling aspect oriented systems. Proceedings of
the 5th International Conference on the Unified
Modeling Language, September 30-October 4, 2002,
Dresden, Germany.

2201

	2195-2201_Page_1
	2195-2201_Page_2
	2195-2201_Page_3
	2195-2201_Page_4
	2195-2201_Page_5
	2195-2201_Page_6
	2195-2201_Page_7
	JAS.pdf
	Page 1

