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On the Decay of Energy in a Diffusive Prey-Predator Model
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Abstract: The aim of this study was to predict the large time behaviour of solutions of diffusive prey-predator
model, by using the notions of mvariant region, energy estimates and exponential stability. The exponential
stability was measured in terms of energy; defined by the square of L’-norm of solutions. By first constructing
and proving the invariant region of the model, the occurrence of energy decaying exponentially in the long run
was shown by using classical energy method. The interpretation and significance of such decay was discussed
and some numerical evidences are presented so as to support the theoretical results.
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INTRODUCTION

The modeling of prey-predator interactions is of
great importance in the study of population dynamics
and mathematical ecology, since the early days of
ecological science disciplme. The basic prey-predator
interaction is normally described by using a system of
ordinary differential equations which modeled the
spatial distribution of species as
(Wang et al., 2007).

The presence of the
prey-predator interaction however changes the behavior
and nature of the whole model. It 15 now a Partial
Differential Equation (PDE) which can be categorized as
a reaction-diffusion system. Actually, the diffusive

the time evolves

diffusion mechanism in

system has been the focal point of several analytic works.
For instance, Kaipio et al. (1995) have examined this
model for the case of one species and two species in one
dimensional diffusion. They approximated the solutions
by using analysis  method, namely
Galerkin element method and performed
simulations on heterogeneity of environments. The
diffusive prey-predator model has also been studied
extensively by Dunn et al (2009), Britton (1986),
Murray (1989), Levin et al. (1993), Malchow (1993),
Medvinsky ef al. (2002) and Holmes et al. (1994).

Apart from that, the inclusion of diffusion terms has
also made our prey-predator model tend to be complicated

numerical
finite

and 1t becomes a nonlinear system that 1s very difficult to
analyze and solve analytically. This means that it does not
have closed form solutions and thus many researchers
focus their studies on the existence and uniqueness of
solutions 1n the long rn. There are several powerful

methods that can be used to study the existence of
solutions of the prey-predator model, namely the method
of invariant region and energy estimates. There are
numerous standard literatures on  these  concepts
(Smoller, 1992; Logan, 2008; Tveito and Winther, 2005).

In general, this study was concemed with another
situation. The main objective was to predict the large time
behavior of solutions by using the notions of invariant
region, energy estimates and exponential stability. Plus,
this study also intended to explore and mterpret the
occurrence of energy decaying exponentially in the long
mun from the ecological point of views.

MATHEMATICAL MODEL

In this study, the diffusive prey-predator model takes
the form:

u, =u{l - v)+Du, (1)
v, =v(u-D+Dv,

with initial condition:

u(x,=Ff(x) (2)
v(x,0)=g(x)

and Neumann boundary condition:
u=v,=0,x=01 (3)
The initial and boundary condition represents the

evolution of prey and predator population n the mterval
[0, 1]. The growth is constrained by the capacity of the

Corresponding Author: Mohd Hafiz Mohd, School of Mathematical Sciences, Universiti Sains Malaysia, 11800, Penang,
Malaysia Tel: +60125882488 Fax: +6045754145
2252



J. Applied Sci., 12 (21): 2252-2258, 2012

environment which is normalized to 1. The diffusion term
u,, allows the prey population to move from the part of
the domain that has high population density to the ones
with lower densities. The homogeneous Neumann
boundary condition is used because we assumed that the
domain is closed and no migration occurs across
boundaries.

In a system of reaction-diffusion equations, the
notions of invariant region, energy estimates and
exponential stability are in fact an important matter in
predicting the large time behavior of solutions. Thus, this
study was concemned with these subjects 1n a diffusive
prey-predator model.

INVARIANT REGION AND ASYMPTOTIC
BEHAVIOUR OF SOLUTIONS

The notion of an invariant region (or invariant
mterval in one space variable) 1s an important idea in this
study. It provides a suitable theoretical foundation and
framework for studying large time behaviour of solutions
(Chueh etal., 1977).

To begin with, consider the diffusive prey-predator
model (1) being written in the vector form:

uj u u[F(u,v)] 4
(o) o)) @

where, x€l, t=0 and:

Denote 2=V, the solution vector of Eq. 1 and £=.6)
1s the vector field of nonlinear reaction terms. The positive
constant D 1s the diffusion constant and I 1s an mterval in
R, possibly all of R. The functions F and G are continuous
and based on Eq. 1:

Fluvy=1wv, G(uv)=u-l

The 1nitial conditions are as below:

u(x,0)=u,(x) (5)
v(x,0)= vy (x)

If T 1s not all of R, then it can be assumed that
Dirichlet or Neumann boundary conditions 1s umposed on
the boundary. Now, consider the following definition.

Definition 1: Let T be a closed set in R*. If b i5a
solution to Eq. 4 and 5 for 0<t<d <<, with given boundary

conditions, plus the initial and boundary values X are in
and &1 15 in X for all x where, xel and 0<t<d then is
called an invariant region/invariant set for the solution
u {x,t).

Actually, there 1s a simple condition on Eq. 4 which
guarantees that a particular region is invariant. Such
region is invariant if the reaction £ points inwards along
the boundary of a rectangle. The subsequent theorem
asserts this condition.

Theorem 1: Let X = [a, b]*[c, d] be a rectangle in UV
space, with X denote its interior and % denote the
boundary, with ? the outward unit normal. If:

f(u)-n<0 ondZ (6)
then ¥ 1s an invariant set for Eq. 4-5.

Proof: Theorem 1 will be proven by using contradiction.
Let suppose that X 1s not an mvariant set. Assume
without loss of generality that u (x,, t,) = b for some (%, t,)
with u(x, t)<b for all xel and 0<t<tt; and yet:

U, (%, 1)>0 Q)

So, the function (x, t,), regarded as a function of x,
must have a maximum at x = x;,. Hence, Au (x,, t)<0.
Furthermore, at (x,, t,):

u, = cAu +F{u,v) <F(u,v)=f(u)-n <0 (8)

The latter implication follows from the fact that:

o

on the boundary u = b. But Eq. 8 contradicts Eq. 7 and
thus X is an invariant set (Q.E.D).

Equivalently, Theorem 1 states that the projection of
the reaction on the outward normal to the surface of the
rectangle 1s non-positive. Theorem 1 can be applied to
domains containing points where f-n1=0 or where the
outward unit normal ? is undefined provided that at
these points the direction of the derivative vector does
not point out of the invariant set.

Next, let study the followmng corollary which can be
used to obtain global existence of selutions and thereby
provides a suitable framework for studying the large time
behaviour of solutions.

Corollary 1: If the system admits a bounded invariant
region X and ueX (u, 1s the imtial data) for all x€R, then
the solution exists for all t=0.
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The proofs of Corollary 1, Theorem 1 and
Definition 1 follow directly from Logan (2008).

Now, let show that Eq. 1 admits a bounded invariant
region as t>0. Based on Theorem 1, define:

o {u[F(u,v)]J
~ A\ MG(u,v)]
u{l - v)
- [V(u - I)J

Draw the zero sets of the components of vector field
t (refer to Fig. 1) claim that:

@)

Y= v}y O<u<l, O=zvel}

is invariant. X is an invariant region if £(u)-2<0 on X
(by Theorem 1).

Now, begin to prove the above-mentioned claim by
considering the edge E, (refer to Fig. 1). E, 1s the edge u =
0 with O<v<]1. This edge has ? or outward pointing unit
normal of:

Then:

u{l-v)y (-1
f-nly=p= :

vi{u—-1) 0
£onhy_g=ull-v)
nf|u=0=0(f will point along the region)

For edge E, (E, 15 the edge O<u<] withv = 1), it has 2
or outward poimting umt normal of:

-1
0
Then:

floo 0jfufl-v)
o Lh.= 1l v{u-1)

b= vi{u -1}

flg=u-1

nf]
of]
=0 (£ will point into the region)

The remaming edges E, (E, 15 the edge u = 1 with
O<v<l) and E, (E, 1s the edge O<u<]l with v = 0) can be
similarly checked using the above calculation. Observe
that £ point inward along the boundaries of the rectangle,
thus Theorem 1 holds and 2 is invariant. By Corollary 1,
the solution exists for all £=0.

Next, the notion of invariant region will be used to

prove the exponential stability i a diffusive prey-predator
model (Fig. 1).

->

i F=0
S L
E » vooox G=0
<
B J *~
Aty p wl f

E E,
f 1
Prey (u)

Fig. 1: Invariant region for prey-predator model (1), E, 1s
the edge u =0 with v = 1; E, 1s the edge O<ucl
withv =1; E; isthe edge u=1 with O<v<l and E,
is the edge O<u<] withv =0. f Fand G as in Hq. &

EXPONENTIAL STABILITY: ENERGY DECAY

Here, the energy decay in a diffusive prey-predator
model will be shown by using the concept of energy
method, an important techmque that 1s applicable to all
types of PDE. Firstly, the energy integral 1s established
and then tlhis integral is then manipulated by using
integration by parts and a set of key inequalities
(Raposo et al., 2008).

The general prey-predator model of population
dynamics with added diffusion of two species is given
below:

1, =Dutu (1-v) (10)
v, =Dv_+v (u-1) (11)
with initial condition:
u(x,0y =1 (x) 12)
V(%0 =g(x)
and Neumann boundary condition:
w=v.=0, x=0,1 (13)
D 1s a diffusion constant and Q<x<1, t=0.
The quantity E(t), defined by:
B= flul+v? dx (14)

Q

is called the energy at time t. This can be interpreted as
the energy of a solution as the square of L:norm of
solutions u and v.

Now, an important theorem in this study is outlined
as below:
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Theorem 2: Consider the Eq. 10 and 11 in €, with
boundary conditions as mn Eq. 13. Assume that Eq. 10 and
11 admits a bounded invariant region % and that
fugix):xe}c I, then there exist positive constant C and
g, such that:

E (t)<Ce™ (15)

Proof: This theorem shall be proven with respect to the
Eq. 10 and 11. By multiplying Eq. 10 by u and integrating
over xef, this will result in:

Juuidx =D [uuggdx = _[uz(l—v)dx
Q Q Q (16)

14
=== [luffds+D[|Vu|? dx = [u®(l- v)dx
2dig a o

Next, multiply Eq. 11 by v and integrate over xe€),
to get:

[ vvpds =D [ voy de = [ v2(u - yds

0 0 0 (17
:iijmz dx+D [ | Vv|? dx = [ vZ{u— Ldx
2 dt g o o
Notice that the terms:
D[|vu? dx
0
and:
D[|vv|?dx
0

are obtained by using integration by part. Adding Eq. 16
and 17, will result in:

lij|u|2+\v|2dx+Dj|vu\2+|vv\2dxs [l +)v P ds
2dtg o o

14

— S uP +lvP dxs-D[|VuF +|Vv]P dx + ] u ) +]v]? dx
2dig a a

iE(t)s—Dn2j|u|2+\v|2dx+ flul+v|% dx
dt o o

%E(t) <—2Dr2E(1) + 2E()

whereby the Poincare’s inequality is applied so as to get
the above result. Lastly, by Gronwall’s inequality:

E () <e T R(0)

This 13 the end of proof of Theorem 2 (Q.ED.).

Note that, the decay of energy depends on quantity
2 (1-Dn*) whereby, if:

then E (t) decays exponentially in the long run. In
Theorem 2 it is shown the occurrence of energy decay in
the long run. Energy decaying exponentially means that
E—0 as t—<. Since, the energy is defined as a solution as
the square of I.>-norm of solutions u and v, this indicates
that both solutions u and v would also decay to zero as t
goes to infimty.

The following definition by Korman (1990) explains
the above phenomenon of uand v decay to zero.

Definition 2: It 1s said that a species u (x, t) dies out or
extinet if tlim u(xt)=0 otherwise, u (x, t) persists.
3

NUMERICAL RESULTS AND THE
SIGNIFICANCE OF ENERGY DECAY

The model (1) is discretized using finite difference
method whereby u , and v, , denotes the approximations

of u(x, t,) and v (x;, t,), respectively:

Uim+l = Dr(“j+l,m tUj1m (- 2Dr)uj,m + k“j,m (1- Vj,m)

Vim+l= Dr(VjJer T Vi-lm J+{1- 2Dr)Vj=m + ijHm (“j,m -1)

with:

7=0,1, ...,n+ 1 and m>0. The Neumann boundary
condition 1s as follows:

ui,m = Ili,rm un+2,m = unm (1 8)

For mtial conditions:

uj,():f(xj') (19)
vio=8(x;)

And, choose initial conditions such that:

r .z
u(x,0)=—-cos”(nx
(x,0) m (mx)

and v (x, 0) = cos? (57x).
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Time (t) Distance (x)

Fig. 2(a-b): Extinction of population when D = 0.2, (a)
Prey and (b) Predator

Now, several numerical investigations are conducted
i order to comoborate the theoretical results with
numerical  evidences. Based on Theorem 2 and
Defimtion 2 the exponential decaying of energy can be
interpreted as the extinction of prey and predator
populations in one ecosystem. This occurs when:

Dos—.
)

Whalst if D 1s too small 1.e.:

D o<a—o,

the decaying of energy is not guaranteed and a
population persistence can oceur mn our prey-predator
model (Raposo et al., 2008).

Consider finite-difference solution plots below with
D = 0.2 (extinction) and D = 0.01 (persistence):

Based on the Fig. 2, observe that the populations of
prey-predator have fallen at the end of simulation and
settle down to a certain value near zero. Thus, the
extinction of population occur when:

D>—
2

And from Fig. 3, the population of prey-predator
persist when:

Dac—r

The phenomena of extinction and persistence of
species is also being analyzed by Gopalsamy (1977) using
the model of competing species:

Time (t)

Distance (x)

Fig. 3(a-b): Persistence of population when D = 0.01, (a)
Prey and (b) Predator

up =Dyuyy - epuy +(a —byju —byzvju (20)
Vi :DZVXX -opEVy t (az —b21u —blzv)V

Gopalsamy analyzed model (20) and obtained the
conditions for existence of non-negative solutions for all
t. For the sake of discussion, let outline the mam result
below.

Assume that:

D= min{Dy,Dy), ;.:max(al,az) and c= max(cy,cg )

Eq. 20 1s subjected to appropriate imitial and boundary
conditions at x = Oand x = L.
It 18 discovered that the global extinction oceur if:

Delats 12
2

On the other hand, 1f:

the persistence of species is possible. In particular, the
two competing species can survive and coexist in the
ecosystem.

Another mteresting remark on the exponential
stability 1s about the large time behavior of solutions,
satisfying Neumann boundery conditions. Theorem 2
indicates that 1f there 1s an mvariant region X and Eq. 15
holds, then all solutions decay as t—e to spatially
homogeneous solutions.

In other words, under suitable circumstances, it
might be reasonable to ignore the diffusion process and
assume that u and v does not vary too much from point to
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Time(t) Distance (x)
Fig. 4(a-b): Surface plots of model (1) for (a) Prey and
Predator population

05
Time(t)

Distance (x)

Fig. 5(a-b). Surface plots of model (1) for (a) Prey and
(b) Predator population when D = 0.001

point 1n space. This will lead to system of ordinary
differential equations:

du
— =f(u
m (u)

Then, the solutions to diffusive prey-predator model
can be approximated by the abovementioned system of
ordinary differential equations. This is sometimes referred
to as the “lumped parameter assumption”. Smoller (1992)
for the discussion on this matter.

In order to see this, consider the solution plots below
for the case D = 0 (no diffusion) and D = 0.001 (very small
diffusive constants).

Based on Fig. 4 and 5, similar surface plots of
solutions for the case D = 0 (no diffusion) and D = 0.001
(very small diffusive constants) are obtained. The
diffusive prey-predator model can be approximated with
system of ordinary differential equations in the long run
when the diffusion mechamsm is too small. And this 1s
consistent with the “lumped parameter assumption”.

CONCLUSION

In this study, the invariant region of the diffusive
prey-predator model has been constructed and proven.
One of the significant roles of invariant region is to
predict the long run behaviour of solutions of our
reaction-diffusion equation. If such invariant region can
be found, then one automatically obtains a priori bounds
on the solution and this priori bounds are essential in
obtaining global existence of solutions. Besides that, the
occurrence of energy decaying exponentially in the long
run is proven by using classical energy method. Energy
decaying exponentially means that E—+0 as t—c. Since, the
energy is defined as a solution as the square of L’-norm
of solutions u and v, this indicates that both solutions u
and v would also decay to zero as t goes to mfimity. This
will result in the extinction phenomenon of prey-predator
populations; otherwise will result m persistence of
population. All these are very umportant to be observed
and studied in order to understand the ecological
interactions between prey and predator.
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