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Abstract: The aim of this research was to maintain the interacting liquid level and temperature parameter values
at the desired level. The design of decoupling and linearization algorithm (Hirschorn’s algorithm) and soft
sensor techniques for an approximated model of an interacting thermal non-linear process is presented in this
worle. First the nonlinear interacting system was converted mto linear non interacting system using decoupling
and linearization algorithm. The soft sensor techniques such as the Kalman observer and the Unknown Tnput
Observer (UIO) was then applied to estimate the system parameters namely level and temperature for a non
interacting linear MIMO system. The obtained estimated error for the plant using UTO observer was less when

compared to Kalman observer.
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INTRODUCTION

The chemical processes possess non-linear dynamic
characteristics and the design of controller for a
non-linear chemical process involves linearizing the
process model around its steady state operating point and
applying the linear control theory. The decoupling and
linearization control (Aklkari et al, 2009) provides
satisfactory response when the process model is
available. However if there is a difference between the real
process and the process model, application of this model
may give unsatisfactory results. But the degree of the
mismatch is generally not high in many chemical
processes. In such cases, it is sufficient to add external
controllers which compensates for the mismatch In this
work the state feedback law (Thosar ef af., 2008) is applied
to the nonlinear process. That is linearized as per the
above process. The state feedback law is developed as a
part of linearization of the nonlinear process. This yields
us a control structure called Global Linearizing Control
which responds like linear system. This type of control is
tried in this worlk for a MIMO nonlinear system with equal
number of inputs and outputs.

For a linear non interacting MIMO system, Kalman
and Unknown Input Observer (UIO) is designed from
control point of view. The system states of a dynamic
system is estimated using the unknown input observers
which may receive input excitation of any kind. Recently
there have been many researchers aiming to
simultaneously estimate the system state and the
unknown input. The estimation of parameters is important
in many engineering applications.

APPLICATION TO CHEMICAL
PROCESS CONTROL

Application of global linearizing control for the Level
and Temperature Control Process is studied here.
The non-linear system is defined as:

% =fx)tgx)u (1

Y = h(x) (2)

where, ‘X’ is the state vector of dimension ‘n’, ‘u’ is an

input vector of dimension ‘m’, ‘y’ is an output vector of

dimension of ‘p’, “f(x)” is a smooth function, h(x) is a (p,1)

vector with a row element h(x) also a smeoth function and

2(x)1s an (n, m) matrix with elements of each column being
gi(x).

The model is chemical process with a liquid level and
temperature as variables to be controlled (Kravaris and
Chung, 1987) is shown in Fig. 1.

The mathematical equations formed for the above
system is:

ﬁ:—{ijlé+éul (3)

dx T —-x 1
d—"j‘:[”—?}ul#{ ]uz, v, =X, ¥, =X, “
It X, €,G8K,

where , %, and x, are the liquid level and the temperature
in the tank, respectively. u, and u, are the feed flow rate
to the tank and the heat flow rate from the heater,
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Fig. 1: Schematic diagram for the level and temperature

control process, u;: Feed flow rate of the liquid,
u,; Heater input, Y, Level sensor output,
Y,: Temperature sensor output, H: Height of the
liquid

respectively. The feed flow rate and heat flow rate are
constrained as 0=u,=22 cm’ sec” ' and O=u, = 2700 J sec ™"
k is the constant coefficient, 1.8, S is the cross sectional
area, 191 cm’, x, is the liquid level in cm, x, is the liquid
temperature, °C, T, is the temperature of the feed 18°C, C,
is the specific heat, = 4.2 J7' K™, ¢ is the density of the
liquid (water).

Extensive numerical simulations are carried out on the
proposed algorithm as detailed below. A standard
Runge-Kutta Gill algorithm 1s used for the numerical
integration of the set of ordinary differential equations.
Prior to decoupling, liqud level Y, depended on u, (flow
rate) and liquid temperature Y, depended on both u, and
u, (heater mput). After the application of decoupling
algorithm Y, depends only on u, and Y, developed here
depends only on u, as can be observed from Eq. 9 and 10.

DEVELOPMENT OF HIRSCHORN’S
CONTROL LAW

In order to calculate a control law that induces linear
mput/ output behavior of a MIMO system, a Decoupling
and Linearization (Hirschorn’s) algorithm (Kravaris and
Soroush, 1990) was developed. It helps to find a
differential operator such that, when applied to the
outputs, 1t will provide a set of algebraic expressions mn x
and u that gives solution to u.

The use of this control law does not require any
structured constraints to be imposed on the closed loop
system dynamics. Therefore, the control designer has the
flexibility to adjust the parameters [, for fast closed-loop
respense and desirable level of coupling.

From Kravaris and Soroush (1990) if:

¢*7=m ()
F.(x) = constant, 1 = 0,..., k*-1, then the system Eq. 1 is

input/output linearizable. [mx1] matrice Py, 1=0,., m,
k=0, r-1.

mx(m-¢™), mx(m-¢™), .., mx(m-¢*" ") matrices v,, v,,...,
Yy and an mxm mvertible matrix T'.

Applying the linearising algorithm, the decoupling
and linearization control law obtained as given by
(Kravaris and Soroush, 1990) is reproduced below:

U= [rLm <x>]1 {v - izl AL (D~ X HIEL, - (O E L0 o - [ H <x>}
i=l k=0 1-0

(6)

u, = {Vl —dyx, +EX1}5 —k—i} (7)
E 2g

u, = *[EJCP?SXI {Vl — X, +Ex1}£ 7k—22:| Cgsx, [V, — 8%, (8)
X, s 2g

Applying the procedure and data as given in
(Akkari et @f, 2009) and substituting u, and u, n the
Eq. 3 and 4 the state equation obtained is both decoupled
and linearised forms. The resulting Eq. 9 and 10 are in
decoupled form:

dz K’
d—tI:Vl—?mXI—E (9)
dx, =V, - ?,4%, (1 0)

o

The advantage of using Hirschorn’s algorithm 1s that
the control law is less complex. In addition to that it also
offers more dynamic feed flow rate of liquid u, and heat
input rate u,. The simulation results show that
Hirschom’s algorithm has better effect.

IMPLEMENTATION OF KALMAN OBSERVER

Kalman observer 1s a recursive predictive filter that 1s
based on the use of state space techniques and recursive
algorithms, i.e., only the estimated state from the previous
time step and the current measurement are needed to
compute the estimate of the current state. The Kalman
filter operates by propagating the mean and covariance of
the state through time. The notation %, represents the
estimate of the state vector X at time ‘n” given
observations till ‘m’.

The state of the filter is represented by two variables
(Tiano et al., 2007 ):

* X, @ posteriori state estimate at time k. The given
observation is up to and including at time k

* P, a posteriori error covariance matrix which
measure the estimated accuracy of the state

¢ The Kalman filter has two distinct phases, prediction
and correction
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Tn a typical situation, first prediction phase provides
an estimate of the current state which holds until the
present scheduled observation. In the correction phase
this observed mformation 1s used to update the estimate
produced by the prediction phase. These two phases
alternatively produce new estimate of the states.
However, if the observation 1s not possible for some
cases, the estimate can made by multiple prediction
phases, skipping observation phase. Consider a linear
time invariant discrete system given by the following
equation:

X = FX By, +W, (11)
Zooy = HXp +V (12)

where, F is the state transition matrix, B is the control
input matrix, W, is the process noise with zero mean
multivariate normal distribution having covariance Q,. H
1s the observation matrix, V.., is the observation noise
which is zero mean Gaussian white noise having
covariance R,. 1], is the control input.

Prediction (time update) equations: Predicted state
estimate:

Xku<-1 - FX(-1\1<-1+BUk (13)
Predicted estimate covariance:
Pk|k-1 - FPk-1|k-1FkT+Q (14)

Correction (measurement update) equations: Innovation
or measurement residual:

S’k = Zk‘Hx(|k-1 (15)

Innovation (or residual) covariance:

Sy = HPy, H+R, (16)
Optimal Kalman gain:
K, =P, H'S,™ (17)

Updated (a posteriori) state estimate:
ﬁmk - )’\(kuq-l—"_Kkj}k (18)
Updated (a posteriori) estimate covariance:

Pk\k = (I'KkH)quk-l (19)

The results that are obtained using the Kalman
observer techmique are explained mn the simulation results
section.

IMPLEMENTATION OF UNKNOWN
INPUT OBSERVER

Observer 1s capable of estimating the states with
unknown inputs. The unknown inputs generally could be
a combination or any of the unmeasurable or unmeasured
disturbances, unknown control action or unmodelled
system dynamics. This observer 1s very useful when we
are dealing with problem of instrument fault detection. It
can be implemented as reduced order observer or full
order observer (Wang and Gao, 2003).

Consider a continuous linear time mnvariant steady
space model of the system:

2(t) = Ax(t+Bu(t+Ed(t)
y() = Cx(D) (20)

where, x€R_, 1s the state vector, u 1s the mput vector, y 1s
the sensor output, A is the system coefficient matrix, B is
the mput ceefficient matrix, C 15 the output coefficient
matrix, deR¥! is the unknown input vector and EeR™ is
the unknown input distribution matrix.

The structure of the UTO is described as:

2(t) = Fx(tH+TBu(tH+Ky(t)
K(t) = 2(OHy(D (21)

where, %R™ is the estimated state vector and TeR ™*
KeR™ and HeER™™ are matrices satisfying requirements.
The error vector is given by:

e(t) = x(D)-x(t) (22)

Using Eq. 21, error vector is obtained:

e(t) = x(D-X(0) = x(-z()-Hy(t) = x(0-z(0)-
HCx(t) = (CHOX()-2(t) (23)

Using Eq. 23, dernivative of the vector 1s:

é(t) = (A-HCA-K,C) e(t)HA-HCA-K,Chz(t)+
(A-HCA-K,CHy({)+I-HC)Bu(t)HI-HC)E(t)-
Fz(t)-TBu(t)-K,y(t) = (A-HCA-K,C)e(t)i+
[F-(A-HCA-K,C)]z()-[ K ~(A-HCA-K,C)]Hy (t)-
[T-(1-HCOYBu(t)-(1-HC)EA(t) (24)

The following relations also hold true:

(HCTD)E=0 (25)
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T = (I-HC) (26)
F - A-HCAK 4K, (27)
K1 = (A", C", p); The cbserver gain matrix:
K, =FH (28)
K =K+K, (29)

H = L*inverse C*L)™(C*L)*(C*L). F, G, H, K, K,
are the coefficients matrices with appropriate dimensions.
I 15 the identity matrix. p is the desired closed loop poles.
The desired observer response can be achieved by
assigning suitable poles through the design of K, and K.
The results that are obtained when the UlO observer
technique 1s mmplemented, 15 explammed in the simulation
results section.

RESULTS AND DISCUSSION

Utilizing the model given by Kravaris and Chung
(1987), decoupling and linearization algorithm was
designed. At first the simulation was carried out without
decoupling. Figure 2 shows the output response of the
level and temperature when the set pomnt of the level and
temperature were changed from 1 to 60 cm and 1 to 30°C,
respectively. When sudden disturbance was ntroduced
at 200 sec n level, it affected the temperature process due
to interaction.

Simulation was carried out after applying Hirschorn’s
algorithm with external PT controller (Nejati et al., 2012) as
shown m Fig. 3. The sudden disturbance introduced at
200 sec 1n level does not affect the temperature process.
Tt can be seen from the Fig. 2 that under the influence of
the controller, ISE is improved.

Figure 4 illustrates the level tracking error between
plant and Kalman observer. Kalman Observer was
designed for the level process of the state space model.
Actual level output of y and observer level output ¥ were
obtamed directly from simulation model of the plant and
state estimation error was calculated. The level error
varied between -2 to +2 cm when the setpomnt of the level
is changed from 1 to 60 cm. So, 6.66% error occurred as
mentioned in Table 1.

Figure 5 illustrates the temperature tracking errors for
plant and Kalman observer. Kalman observer was
designed for the temperature process of the state space
model. Actual temperature output of y and observer
temperature output ¥ were obtained directly from the
sinulation model of the plant end state estunation error
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Fig. 2: Out put response for the step change in the level
without decoupling with PI controllers
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Fig. 3: Out put response for the step change in the level
with decoupling with PI-SPW controllers
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Fig. 4: Estimated error of the plant using Kalman observer
(KO) for level
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Fig. 5: Estimated error of the plant using Kalman observer
(KO) for temperature

0.03

UlO ressidual

-0.03 ' ' r '
0 200 400 600 800 100

Samples

Fig. 6: Estimated error of the plant using Ul observer
(UIO) for level

Table 1: Comparative performance of observers

Observer type Level error (%) Temp. error (%)
Kalman observer 6.66 13.30
Unknown input observer 0.06 0.13

was calculated. The temperature error varied between
-2 to +2°C when the setpoint of the level 1s changed from
1 to 30°C. So 13.3% error occurred as mentioned in
Table 1.

Figure 6 illustrates the level tracking errors for plant
and Unknown Input Observer. Unknown Input Observer
was designed for the level process of the state space
model. Actual level output of y and cbserver level output ¥
were obtained directly from the sumulation model of the
plant and state estumation error was calculated. The level
error varied between +0.02 to -0.02 cm when the setpoint
of the level is changed from 1 to 60 cm. So the observer is

UIO ressidual

0 200 400 600 800 100
Samples

Fig. 7. Estimated error of the plant usmg Ul observer
(UIO) for temperature

designed m such a way that the observer output follows
the system output and only 0.06% error occurred.

Figure 7 illustrates the temperature tracking errors for
plant and Unknown Input Observer. Unknown Input
Observer was designed for the temperature parameter of
the state space model. Actual temperature output of v and
observer temperature output ¥ were obtained directly from
simulation model of the plant and the state estimation
error was calculated. The temperature error varied
between +0.02 to -0.02 cm when the setpoint of the level
is changed from 1 to 30°C. so the UT observer is designed
in such a way that the observer output follows the system
output and only 0.13% error occurred as mentioned in
Table 1. Table 1 show that UIO gives less error.

CONCLUSION

The decoupling linearization algorithm was applied to
a nonlmear MIMO mteracting thermal process. The
simulation results had shown that even if the processes
are non-linear and interactive a satisfactory control
performance could be obtained. The Kalman and
Unknown Input Observer (UTO) was designed to estimate
the system parameters like level and temperature for a non
interacting linear MIMO system. Results of these
simulations are presented in Table 1. Performance of a
UIO was found to be better. The obtained outputs for UIO
give less error when compared to Kalman observer.
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