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Abstract: The purpose of this study is to propose and investigate a new approach for extracting spectral
information of motion response of offshore structures. The approach is based on applying Time-varying
Autoregressive (TVAR) model. This study is virtually unexplored in offshore engineering field. In the
literatures, a number of works have shown that spectral content are extracted using Discrete Fourier Transform
(DFT) for the frequency-domain analysis. Here, we outline a practical algorithm for TVAR model which uses
Expectation-maximization (EM) algorithm based Kalman smoother. Short time Fourier transformation and Hilbert
trans formation are used as benchmark. The method is then applied to sampled discrete displacements of a fixed
platform as a time series generated from field measurements. All the methods reveal that the spectrum
characteristics of sampled platform displacement are time- varying frequency and time- varying gain
distribution. The results indicate that TVAR model using KS with EM algorithm is superior to other methods
in tackling frequency or amplitude modulation and systems that have low frequency dynamics. Tt is also found
out that the mean frequency derived from the Hilbert transform 1s lower 8.2%, around 4.8% for short time Fourier
transformation and 6.2% for TVAR model than the FFT spectrum.

Key words: Platform displacement, time-varying spectrum, TVAR model, Kalman smoother, EM algorithm

INTRODUCTION

An important characteristic of offshore structures
either fixed or compliant is their motion responses. The
Discrete Fourier Transform (DFT) has been the most
widely used technique to extract the spectral contents on
those motion responses. One of the drawbacks of the
DFT is that it does not provide any information about the
time at which a frequency component occurs.
Nonetheless, when the signals are nonstationary, then the
DFT is not applicable anymore. Leakage is also big
problem for the DFT. Prior researches proved that
application of the DFT i1s not recommended to process
ocean wave elevation because of non-stationary and
nonlinearity of sea states (Huang et al., 1998; Schlurmann,
2002; Liu, 2000) as well as structural motion responses.
The application of the DFT also may affect the frequency
response of offshore structures (Hwang et al., 2003).

Representation of spectral information of measured
motion responses in time-frequency plane undoubtedly
provides additional nsights of the analyzed system that
may have never been revealed using the DFT. Some tools
that can be used for time-frequency analysis such as
Short Time Fourier Transform (STFT), Wavelet Transform

(WT) together with their variants are popular and have
been implemented successfully. However, those non
parametric approaches suffer of resclution conflict in both
frequency and time domain due to Heisenberg uncertainty
principle. The best solution 1s to employ time-varying
spectral analysis which 13 not affected by resolution
conflict. Generally, parametric approach based spectral
contents extraction 1s a promising technique to solve such
a problem.

Thus study proposes the application of TVAR model
as an alternative method in extracting frequency content
of motion responses for offshore structures. That is
because spectral contents extraction 1s the basic stage for
Response Amplitude Operators (RAO) estimation,
response Transfer Function (TF) and coherence analysis.
Tt is also then can be used for modal property analysis of
existing offshore structures, damage identification and
other purposes.

APPROACH AND METHODS

TVAR model 15 an extended Autoregressive (AR)
model, but its coefficients are time-variant. As a
parametric approach, TVAR model estimates time-varying
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spectrum by modeling the signals as a time-series. This
realization enables to produce the poles of the system
through TVAR coefficients. TVAR model in discrete time
index k 1s given by:

y(k):éal(k)y(kfi)Jre(k) (1)

Notation p represents the order of TVAR model and
v(l) is the signal. Term a(k) is the TVAR coefficients and
e(k) 18 the prediction error term which i1s Gaussian with
zero mean and variance o°,.

Estimation of a(k) can be computed through adaptive
method and basis function approach (Sodsri, 2003). Until
now, criteria for selecting the proper basis function is not
available yet and still open research (Sodsri, 2003,
Zhang et al., 2010; Nguyen et al., 2009, Khan and Dutt,
2007), while adaptive method is very popular due to its
simplicity and generality. Hence, adaptive method 1s
addressed 1n this study. To accommodate the use of
adaptive method in estimation of a(k), Hq. 1 must be
converted into a measurement equation in vector notation
as:

hilk) = Clox{kotvik) (2

Notation Ctk) = [v(k-1), ..., y(k-p)] 1s the vector of the
past measurements; vector x(k) = [a,(k), .... a,(k)]" is the
array of TVAR coefficients and v(k) is the measurement
noise with covariance matrix R. By simplifying the TVAR
coefficients evolve over a time linearly and first-order
Gauss-Markov process and then x(k) can be expressed as
state equation as follows:

x(k) = Ax(k-1 Fw(k) (3)

The term A is the state transition matrix and w(k) is
the state noise with covariance matrix Q. Equation 2 and
3 represent a state-space model which enables the
application of Kalman smoother m order to estimate
TVAR coefficients. Both equations contain model
parameters which are assumed before the application of
the adaptive method. These parameters are mitial
conditions x~N{y,, Z;), A, Q, R and denoted by 6 = {A,
Q, R, Mg, X}, If some simplifications are introduced in
Eq. 3, then the equation calls for two remarks:

» If there 1s no state noise in the state equation and
state transition matrix A is constrained to a scaled
identity matrix, then Eq. 3 can be written in Eq. 4
where state variable depends on the choice of the
forgetting factor A4, expressed in Eq. 4:

x(k) = A7 x(k-1) (4

Equation 4 1s called Adaptive Autoregressive (AAR)
model and the only tuning parameter 1s A and can be
estimated with Teast Mean Square (LMS) or
Recursive Least Square (R1.S) algorithm.

»  Ifstate equation n Eq. 3 1s modeled as a random-walk
model, then it can be expressed:

x(k) = x(k-1+w(l) (5)

Noise covariance matrix is constrained to an identity
matrix: Q = 170’ where o°, is a noise state variance. The
unknown parameter in random-walk model is o°,.

Estimation of Eq. 4 using LMS and RLS algorithm had
been investigated by Sodsri (2003). He revealed that the
adaptive method under this class is sensitive to the noise
and fail to track the systems with fast or broad frequency.
Estimation of Eq. 5 was successfully carried out by
Nguyen et al. (2009) using amplitude demodulation-
Kalman smoother (AD-KS). However, both covariance
matrix (Q and R) are set up mamually. Further, the
drawback of both models had been mvestigated by
Khan and Dutt (2007) and they found out that it might
deteriorate the performance of time-varying spectrum
estimation and proposed the use of Kalman smoother with
EM algorithm because of its superiority. This study
addresses the use of Kalman smoother with EM algorithm
which allows the model parameters 6 to be estimated and
employed in spectral estimation. As benchmark, STFT and
Hilbert Transform (HT) are used.

KALMAN SMOOTHER WITH EM ALGORITHM

Kalman smoother with EM algorithm (KS with EM) 1s
smoothed Kalman filter which is optimized with EM
algorithm. Basic theory covers Kalman filter, smoothing
equations and expectation-maximization of log-likelihood
function. Kalman filter calculates the states x(klk) and
states covariance matrix P(ldk) in Eq. 5 in two stages: time
update equations (predictor) and measurement update
equations (corrector). The time update equations project
the states and state covariance matrix estimates forward
from time index k-1 to k, written in Eq. 6 and 7:

x(klk-1) = Ax(k-1[k-1) (6)
P(k[k-1) = AP(k-1k-DA™Q (7

The measurement update equations mcorporate a
new measurement 1nto the a prior estimate to obtain an
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improved a posteriori estimate. The first step in
measurement update equations is to compute Kalman
gain:

K(k) = Pkk-1)C&)T (R+CEPRK-DCED (8

The next step 1s to compute an a posteriorn state
estimate x(k|k) as a linear combination of an a priori state
estimate x(kfl-1), Kalman gain and weight difference
between an actual measurement y(k) and a measurement
prediction (C(lox(klk-1) as shown in Eq. 9. The difference
(v(k)-Cll)x(k|k-1) 1s called residual. The residual reflects
the discrepancy between the predicted measurement
(C(l)x(k[k-1) and the actual measurement y(k):

x(kll) = x(lfk-1 Ky (kxCklle-1)) @)

The final step is to obtain an a posteriori error
covarlance estimate via Eq. 10:

Peklk) = (I-K&)CH)TIPk]k-1) (10)

The use of procedures above will generate lagged
response of x(ldk)estimate. Smoothing equations can be
used by reducing delay and decreasing the variance of
states estimate (Nguyen et al., 2009). Combination
between Kalman filter and smoothing equations is called
Kalman smoother. Because the signal is processed offline,
then fixed-interval smoother is applied m this paper. This
method has performance to improve the accuracy of the
states estimate (Khan and Dutt, 2007) and derived
Eq. 11 and 13:

T(k-1) = P(k-1/k-1)A P(klk-1) (1)
(k=K )= x (k- 1k 1)+ 3k 1) (k[K) - ax (kk-1))  (12)

Pk -1K)= Pk -1k —1)+ I (k- 1){x (k[K) - x (k[k 1)) (k-1)"
(13)

EM algorithm is utilized to tune the model parameters
8, based on maximum likelihood of ¥(1:k) in the presence
of hidden variables x(kK), k = 1, ..., K. EM algorithm
consists of two steps. First step is calculation of the
expected complete log-likelihood as a function of 8. The
expected complete log-likelihood 1s expressed as follows:

F:E{logp(y(l:K),x(l:K))|y(1:K)} a4

The expected likelihood depends on three quantities
below:

x(k‘K):E{x(k)b‘(l:K)} (1 5)

S(K[K) = Efx (k) (k)] (1K)} 16)

= P(K[K )+ x (KK )x (k[K)"

s(kk 1K) =B (k) —1)' |y (1:K)}

=Pk k- 1K )+x(k,[K)x (k- 1K)

(17)

T

One quantity in Eq. 17, P(lc,k-1]K) must be calculated
through Eq. 18 while all the quantities in Eq. 15 and 16 are
calculated using the Kalman smoother equations:

P(kk-1|K) = I(k-1)PCkK) (18)

Second step is maximization by direct differentiation
of F with respect to the 8. These two steps are applied
iteratively until convergence achieved. The estimates for
the model parameters 8 are given by as follows:

A= [is(k,k —1|K)}[§S(k —1\1{)}_1 (19)

k=1 k=2

Q= [ (K - 1)]@:3@ K)- Awés(k 1k \K)} (20)

ks

)

R, =[/K

' {y(k)2zc(k)Tx(k|K)y(k)} @1)
S (kIK)' (kK e (k)

Muee = X(k[KD) (22)
Zew = P(KK) (23)

Tt 18 noted that differentiation of F with respect to the
0 can be referred to Khan and Dutt (2007) because of the
lengthy of the expressions. Finally, TVAR coefficients are
obtained in term x(k|K) and time-varying spectrum can be
estimated as:
2
H(kK f)=— %

1= e, ([ )e ™

&)

(24)

Term a(k|K) is the jth element of the TVAR model
coefficients, 0, is the prediction error variance and f is the
observed frequency.

NUMERICAL EXAMPLES
Here, numerical examples of synthetic signals as a

verification of the method in estimating time-varying
spectrum 18 presented.
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Fig. 1(a-b). Numerical examples of time-varying spectra of (a) Linear chirp signal and (b) JTump signal

Two kinds of synthetic signals are linear chirp signal
and jump signal. Both synthetic signals have amplitude
and frequency modulation. The frequency of chirp signal
changes linearly from 0.05 to 2 Hz as shown in the top
panel of Fig. 1a, while there is a jump from 0.05 Hz into 2
Hz at the time instant 50 sec in the top panel of Fig. 1b.
These examples are a kind of an attempt in capturing
systems that have slow varying dynamic parameters.
Simulations are carried out in 100 sec with a 200 Hz
sampling frequency and no measurement noise is injected.

In Fig. 1, HT and STFT as non-parametric approach
clearly show thewr drawbacks m tracking nonstationary
signal for the underlying system. In linear chirp signal,
frequency estimate from using HT has tail effect as shown
1n the bottom panel of Fig. 1a. The bottom panel of Fig. 1b
displays that frequency estimate from using HT bounces
roughly after the jump, while STFT behave similarly
before the jump. Compared to the others, TVAR model
using KS with EM algorithm has better frequency and
temporal resolution in tracking the sudden change of the
signals.

APPLICATION TO FIELD
MEASUREMENT DATA

Here, the application of the proposed method to
analyze the field measurement data 15 demonstrated.

———— Displacement
Mean value l

Displacement (mm)

0 1500 2000 2500 3000 3500

Time (sec)

500 1000

Fig. 2: Field measurement data of a fixed platform
displacement

Displacement time history of an offshore structure was
recorded from a fixed platform in Malaysian water. The
time history 1s depicted in Fig. 2. The data was recorded
continuously with sampling period 0.29 sec. It is noted
that statistical properties of the platform displacement
record are not discussed here.
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Fig. 3: Platform displacement spectrum estimation by FFT
and AR model
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Fig. 4 Time-varying spectrum by TVAR model using KS
with EM algorithm

Time-series of Fig. 2 reveal that the platform
displacements record seems to be almost linear random
time-series because its amplitudes appear to be almost
symmetric with respect to its mean value. The record also
shows the nonstationary behaviour visually. It implies
that the platform displacements in the rough or extreme
sea state contains more nonlinearity and nonstationarity.

Spectral contents are calculated by FFT and AR
model as basic information. Solution of AR model is
done using Yule-Walker equation and solved by
Levinson-Durbin algorithm. Tt is found that AR model has
model order of 77 to fully capture the dynamics of the
platform displacements record as well as from those
obtammed by FFT. This optimum model order 1s determined

05 : : : : : : .
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~
< o3 1
5 o
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53 | .
i 0.2 § g
i ‘ PIPHILE TR
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00
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Fig. 5: Time-varying spectrum by HT

by Akaike’s Information Criteria (AIC). Figure 3
depicts the spectra obtained from the two methods.

The similarities and differences of the both methods
in calculating the spectral peak frequency can be
observed clearly. It can be seen that the dominant peak
frequency between the FFT and the AR model is almost
similar which is close to 0.12 Hz. The spectral magnitude
of the FFT spectrum 1s higher around 1.28 times than the
AR model magnitude. However, the AR model produces
sharper and smoother spectrum than FFT. The result
shows that estimation of the spectral peak frequency
using AR model enables the frequency components to be
determined more exactly than FFT in situation where the
signal is contaminated with noise. However, both
methods only give averaged spectrum and cannot give
information on time localization.

Thuis 1s the reason why the time-varying spectrum 1s
presented. Time-varying spectrum of the platform
displacement record in time-frequency plane using the
HT, STFT and TVAR model via K3 with EM algonthm are
displayed n Fig. 4-6, respectively. One similarity is
observed clearly in those Fig. 4-6, that the measured
platform displacement has nonstationary characteristic.
Time-varymg spectrum obtained from the three methods
has the mean frequency as shown in Fig. 4-6, denoted by
dashed line (- - -). Model order of 2 is adequate for the
TVAR model

As benchmark for the TVAR model, the HT and STFT
are performed. It should be noted that in STFT, every
window is overlapped by 50% and multiple window
procedure is carried out under Kaiser window. Compared
to the TVAR model spectrum, the STFT and HT spectrum
produce a rather broad tune-frequency band. However,
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Fig. 6 Time-varying spectrum by STFT
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Fig. 7. Temporally averaged time-varying spectrum

the time-varying frequency obtained from the HT method
1s more transient than the others. It might be the effect of
frequency modulation as stated by states (Huang et al.,
1998; Schlurmann, 2002).

The marginal spectrum averaged over the whole time
sequence (mean spectrum) of all methods 1s depicted in
Fig. 7. This figure underlines results depicted in Fig. 4-6.
There is difference in shape and magnitude among the
methods. The mean spectrum obtained from TVAR model
1s much sharper than the others, while the HT produces
the flattest spectrum. Each method produces different
magnitude, where the HT has the lowest and the STFT
has the highest magnitude, followed by TVAR model at
the middle, respectively.

15,

Magnitude

0.5

e
Frequently (Hz) 2000

" 1000 _.
0 o Time (sec)

Fig. 8 Tune-varying spectrum by TVAR model m 3D
distribution using K3 with EM algorithm

If the FFT specttum is taken as reference, the mean
frequency derived from the HT is lower 8.2%, around 4.8%
for STFT and 6.2% for TVAR model. From Fig. 7 also can
be observed that even STFT is Fourier-based method, its
spectrum is slightly different with the FFT spectrum due
to multiple windowing procedure. It 1s strongly believed
that the more stationary or nonlinear the platform
displacement 1s (1.e., in rough or extreme sea state), the
more the difference between the non Fourier-based
methods and Fourler-based methods will be. These
finding results certamnly have impacts on the ocean
engineering designs such as RAOs calculation.

3D distribution of time-varying spectrum provides
good description as shown in Fig. 8. As observed in that
figure, non-stationary is evident. The time evolution of
the spectral peak with different intensity appears within
the considered frequency range. In 3D distributions, it can
be seen that the displacement record characteristics are
time-varying frequency and time-varying magnitude
distributions. TVAR model using KS with EM algorithm
can extract such informations accurately and produces
high resolution.

The wvalidation of TVAR model output 1is
displayed in the top panel of Fig. 9. The true means
the original displacement record and the estimate
is the prediction result of TVAR model. The modeling
error of TVAR models is relatively small as shown
in the bottom panel of Fig. 9, meaning that TVAR
models can fit the displacement record accurately.
Accurate fiting will produce the accurate poles of the
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Fig. 9(a-b). TVAR model (a) Output and (b) its modeling
error

system through TVAR coefficients. It mnplies to the
accurate time-varying spectrum of the displacement
record.

CONCLUSION

Field measurements based time-varying spectrum has
been estimated in this study using TVAR model.
Performance of the TVAR model using KS with EM
algorithm compared to the Hilbert transformation and
STFT has been carried out. The results show that TVAR
model using KS with EM algorithim is superior to other
methods. All TVAR model-based methods, together with
STFT and HT reveal that sampled offshore structure
respeonses (displacement) 1s time-varying frequency and
time- varying magnitude distributions. TVAR model via
K8 with EM algorithm can estimate the time-varying
spectrum with high reselution. This study recommends
that TVAR model is prospective for spectral analysis of
offshore structures responses, especially for offshore
structures vibration monitoring.
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