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Abstract: Short Term Load Forecasting (STLF) has received more and more attention during the last two
decades because of economic reasons. In this study, for initial forecast we have developed a proper Multilayer
Feedforward Neural Network (NN). This network has three layers and its parameters are tuned by Levenberg-
Marquardt Bock Propagation (LMBP) augmented by an Early Stopping (ES) method to enhance speed of
convergence of the learning algorithm. For abrupt weather changes and special holidays, a Fuzzy Inference
System (FI3) has been also designed to improve the forecasted load appropriately. To show the effectiveness
of the proposed method, some real experimental data taken from some Tranian electrical company have been
considered in this study for the purpose of simulation. The results were very promising.
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INTRODUCTION

Quick and accurate load forecasting 1s very important
for power system operation. Furthermore, 1t is vital for
economic dispatch, hydro-thermal coordination, unit
commitment, transaction evaluation and system security
analysis among other functions. Market operator,
transmission owners and generation plants are the most
customers for these predictions that continuously
demand for a more reliable and more robust Short Term
Load Forecasting (STLF) technique.

STLF has received more and more attention during
recent years because of its importance. Many researches
have been extensively established diverse techniques to
obtain more acceptable load forecasts. In the literature,
statistical methods such as auto-regression and time
series have been used broadly for STLF. A lot of models
using classical techmiques were created during last
decades, such as Box-Tenkins models, ARIMA models,
Kalman filtering models and the spectral expansion
techmques-based models. All of these techmiques work
well on normal conditions but they lead to mcorrect
results when there are unusual changes in environmental
parameters or other effective parameters in STLF. Extreme
complicated relationships that lead to 1immense
mathematical operations for load forecasting are one of
the most wnportant defects of these techniques. Time-
consuming for load forecasting, intrinsic inaccuracy and

numerical instability are other their deficiencies
(Hagan and Menhaj, 1994).

In recent years, the usage of mtelligent techmques
has been increased noticeably for solving engineering
problems. Artificial neural network and fuzzy systems are
the two most powerful tools for solving engineering
problems that can be used approximately m every
prediction and modeling problem. Tt has been shown that
they are umiversal approximators with capability of
modeling every nonlinear system. Considering this
capability, some researchers have designed ANN-based
short term load forecaster. Contemporary load forecasting
techmques, such as Artificial Neural Networks (ANN)
(Dash et al, 1997, Vermaak and Botha, 199%;
Papalexopoulos et al., 1994, Khtanzad et al., 1998,
Moharari and Debs, 1993), wavelets (Zheng et al., 2000),
fuzzy logic (Papadakis et al., 1998), (Senjyu et al., 1998),
(Kassael ef al., 1999) , expert systems (Daneshdoost ef al.,
1998), have been developed recently, showmng more
acceptable results than traditional methods.

Although fuzzy logic models have a very excellent
transparency, it 1s very time-consuming to regulate fuzzy
model parameters to reach a good result. Therefore, it is
reasonable to use them only when we need to infer like a
human In contrast, ANNs have an excellent automatic
learning capability to improve their behavior from
experimental data. In most practical cases, when you have
enough empinical data neuro-based modeling is preferable.
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Fig. 1: Overall flowchart of the proposed forecasting method

In this study, we have designed a short term load
forecaster that it benefits advantages of both ANNs and
fuzzy systems. Flowchart of the proposed method is
shown in Fig. 1. At first, we develop a multi-layer feed
forward neural network that accurately predicts next
hours load demands for usual days under normal
weather conditions. We refine the results of the ANN
using a fuzzy logic system properly developed for special
days or for cases in which an abrupt weather change
oceurs 1n order to make the load forecaster more reliable
and robust.

MATERIALS AND METHODS

Load characteristic: Load forecasting depends on several
parameters such as historical load  data, weather
condition and day type (Drezga and Rahman, 1998;
Barzamim ef af., 2003). Inclusion of all these parameters in
the forecaster yields more acceptable load forecasting
results, However, it leads to massive computational
operations. To establish an appropriate trade off between
these objectives, we have divided weekly days mto 4
categories (Barzamim ef af., 2005). Each category has
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unique load lags. The load forecaster consists of four
functions each described as:

L =1 (LL, month, T) (1)
where, 1 = 1,..., 4, LL, and T denote load lags and
temperature, respectively. Load lags inputs for each
function are determined through correlation analysis.

Weather information includes cloud coverage, wind
speed and temperature. Through some studies we have
observed to improve the performance of the load
forecaster, temperature information plays a crucial role.
Therefore, we have considered temperature inputs of
three cities in tropical, moderate, cold and hot areas as
weather conditions prototypes in all cities.

The Month input as an extra input plays an important
role to reduce the number of load neuro-forecaster. In
previous studies such as (Moharari and Debs, 1993), they
had to develop 16 load forecasters for 4 seasons and 4
weekly days’ categories. But by considering this input, as
shown in the next section we could reduce the mumber of
load forecasters to 4 with remarkably better loads
forecasting.
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STLF technique by MLP neural networks: Neural
networks have the capability of modeling any nonlinear
unknown function using available mput(s)-output(s) data.
Also because of highly non-linear behavior of load
forecasting systems, it is reasonable to use them to model
load behavior. This section outlines the MLP neural
network structure considered for load forecasting.

Figure 2 presents the general structure of the MLP
used in the study. Each neuron in the hidden layer has a
tangent sigmoid transfer function as:

1-¢*
l1+¢

£x) = 2

—x

For avoiding saturation problems associated with the
nature of tangent sigmoid neurons, it 1s vital to scale input
and target signals to the range of [-1, 1] as follows:

:2XAct|ml_XMm -1

XMax - XMm

x 3

Horralization

where, X,;.. and X, are the maximum and minimum values
of the last 21 days which 15 obtained through a deep
sensitivity analysis of the loads.

For each weakly day’s group, developed a neuro-load
forecaster with the structure given in Fig. 2 with inputs
mtroduced m Barzamim ef al. (2005). Input layer for
hourly load forecasting of each weekly group has 13, 19,
16, 19 entries, respectively. In each case three inputs
represent temperatures of three prototype cities (Fig. 2),
one 1nput 1s an integer number from 1-12 to show which
month of the year 13 our concern and the rest of inputs are
called load lags. Apparently, each designed network has
a single output named forecasted load.

For training these neural networks we divided
available mputs mto three subsets, namely traimung
subset, validation subset and test subset. At first, we
used the training
appropriately. Validation subset 1s applied to networks
until the overall load forecasting error begins to mcrease.
Learning method in these two stages is the
Levenberg-Marquart Back Propagation that is noticeably
faster than the standard back propagation method
(Hagan and Menhaj, 1994). Fmally, we venify the
performance of the trained network through the third
subset (test subset). Tt is shown in load forecasting
examples that are using this traimng method considerably
mcreases the accuracy of neural networks for load
forecasting. The designed neuro-load forecaster simulator
is then used for one hour up to a week load forecasting as
shown in Fig. 3. The first hour load 1s forecasted and then
it 15 used as one of the MLP load lag inputs for the

subset to train each network
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Fig. 2: The MLP architecture for each weekly group

prediction of the next hours” load. Consecuently, the error
of each hour load’s forecast will influence the prediction
of next hours” load.

Load forecast modification using fuzzy concepts:
However, the designed neuro-simulator forecast precisely
the load values in normal situations, it fails to operate
successfully for two cases, namely abrupt changes in
weather conditions and special holidays. The forecasted
load mn these days has a noticeable error in comparison
with the forecasted values in normal conditions. Some
modifications are recuired.

As shown in Fig. 4, a fuzzy system known as
Modifier has been developed for this purpose, because
we have a prior knowledge about effects of abrupt
weather changes and special holidays on consumed loads
and the transparency of fuzzy models 15 an impressive
factor. The output of this modifier is:

—Load

Load, .

_ Load,, .4 Forcasted

4

MT

The temperature changes in each season of a year
the daily average temperature
consequently daily minimum and maximum temperatures.
Three fuzzy variables T (average temperature), AT
(average temperature changes), LtP (ratio of load to peak
load), are defined in the temperature rule base. The terms
of THam, TKho, TArk used in the rule base are the
average temperature of Hamedan, Khoramabad and Arak
cities, respectively m the forecasting day. Average
temperature changes 1s defined as the difference between
the daily average temperature of the forecasting day (T(1))
and the average temperatures of three days ago for those
three cities (ATHam, ATKho, AT Ark) and obtained as:

influence and

TA-D+T-D+Ti-3)
3

(5)

AT =Td) —
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Fig. 4: Schematic of the proposed fuzzy expert system for the STLF

We have also used the term, Ltp in the rule base. This
term defined in Eq. 6 1s the Ratio of load to peak load that
15 large for loads near the peak load and it 18 small for
loads near the minimum load:

Load()
Peak

(6)

LtP(i) =

where, load (1) 1s the load of hour 1 and peak 1s the
maximum load of the forecasting day which are gamed by
initial forecasting. Each of these fuzzy variables, T, AT
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and LtP can take different values. For example, ATArk
takes seven fuzzy set values: NB (Negative Big), NM
(Negative Medium), NS (Negative Small), ZE (Zero), PS
(Positive Small), PB (Positive Big). Membership functions
of input and output fuzzy sets are shown in Fig. 5.

We used the fuzzy centroid defuzzification scheme to
translate fuzzy output statements into crisp output values.
Because special inputs have different input-output pairs
of fuzzy rules, for combining values of different activated
rules and operator 1s used. Samples of these fuzzy rules
are presented as the following:
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Fig. 5: Membership functions for input-output variables

if (TAtk = PM2) & (THam = PM1) & (Tkho = PS) &
(ATAtk =NS) & (ATHam = PS) & (ATKho = 7ZE) &
(LtP = S) then (RG = N'M)

if (TArk = PM2) & (THam = PM1) & (TKho =PS) &
(ATAtk = ZE) & (ATHam = NS) & (ATKho = NM) &
(LtP = M1) then (RG = N8§)

if (TArk = PM1) & (THam = PS2) & (TKho =PS) &
(AT Atk = NS) & (ATHam = NM) & (ATKho = NS) &
(LtP = M2) then (RG = ZE)
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» il (TArk = PS2) & (Tham =PS2) & (Tkho =PS) &
(ATArk = PS) & (ATHam = NM) & (ATKho = ZE) &
(LP = B) then (RG = N'S)

Considering load data of BREC, days of ayear
are categorized into 2 groups: normal and special
days. Normal days are divided into 4 groups.
Special days are religious celebration, national
celebration and ete. are divided nto 2 groups: solar and
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lunar calendar special days. Solar special days occur in
specific of a year but lunar special day’s
occurrence varies 1 a year depending on the two
calendars.

Special days™ load patterns are dissimilar to those of
weekdays, however, they are similar to Fridays® load
patterns. So, for load forecasting of special days, the
outputs of the nearest Fridays’ neuro-based forecaster are
as inputs of the fuzzy modifier system. The fuzzy rule base
employs only two fuzzy variables of time and weelcday
type to improve the imitial load forecasts. For example, in
Ashoora special day, leads of hours 1 to 6 and hours 20
to 24 are almost the same as those of the last Friday and
loads of work hours (7 to 19) are lower than those of the
last Friday.

Inputs membership functions of all special days are
the same as those of the Ashoora day while outputs

times

membership functions each is selected based on the
holiday type. We also used the fuzzy centroid
defuzzification scheme to convert fuzzy outputs into crisp
values. Furthermore, to combine different activated rules,
AND operator is used. Samples of fuzzy rules of Ashoora
day 1s presented below:

¢ if (DType=D1) & (1 <Hour<8) Then, (RG =NS52)

¢ if (DType=D1) & (9<Hour<15) Then, (RG =NMI1)
« 1 (DType = D1) & (16<Hour<20) Then, (RG = N30)
+ 1 (DType = D1) & (21 <Hour<24) Then, (RG = P5)

Accessories: The NSTLF also contains a data analyzer
and a temperature forecaster. The data analyzer 1s used for
dentification and filtering of the BREC bad data
(Daneshdoost et al., 1998). The temperature forecaster is
employed for hourly temperature forecast and has an
ANN architecture based on a three-layered feedforward
neural network. The mputs of the temperature forecaster

Table 1: Average of daily error load forecasting in each month of year 2002

are the high and low temperatures of the underlying days,
the actual hourly temperatures and the high and
low temperatures of the day before the first forecast
day.

RESULTS AND DISCUSSION

According to Iran Electricity Market Rules, we
recognize the first six months of each year as hot
months and the rest as cold months. From view point
of the consumed load, daily hours in hot
months are considered as follows: 5-8 low load
hours, 820 ordinary load hours and 20-24 peak
load hours. The classifications in cold months are:
0-5 and 21-24 low load hours, 5-17 ordinary load
hours and 17-21 peak load hours. According to the
new Marketing Rules, forecasting errors for peals,
ordinary and low hours should be smaller than 2, 5 and
10%, respectively. So, the designed program (load
forecaster) for load forecasting should satisfy all of these
constraints.

The designed load forecaster without the fuzzy
modifier yields up to a week load forecasting results with
an MAPE less than in average 1.7% with MLP m most
cases and less than in average 1.3% with FIS for INPS and
in average 2.6% in most cases. This
becomes less than 2.4% 1if the fuzzy modifier 1s included.
Table 1 and 2 represent the daily load forecasting errors
for each month in each year. Figure 6, 7 show examples of
up to a week forecasting performance of the designed
load forecaster. In these examples, actual load and
temperature data of the BREC in the year 2002 have been
used.

Figure 8 1s an example of daily load forecasting for
Tul 21, 2002 without fuzzy modifier. That it's forecasting
error 1s about 1.5%.

less than

Month number
Time periods 1 2 3 4 5 6 7 8 9 10 11 12 AVE
Low load hours 2.4 3.2 2.2 2.9 23 1.9 1.9 1.6 2.5 34 31 3.3 2.6
Ordinary load hours 2.5 2.7 4.2 3.7 2.8 2.6 2.5 1.4 2.7 2.6 2.5 3.4 2.8
Peak load hours 2.3 2.8 2.7 2.9 2.2 2.3 2.4 2.3 2.5 2.4 2.0 2.2 2.4
Total error with MLP 2.4 2.8 33 3.3 2.5 2.3 2.3 1.6 2.6 2.8 2.6 3.1 2.6
Total error with MLP and FIS 2.3 2.2 2.7 2.8 2.1 2.3 2.3 1.6 2.4 2.5 2.6 3.0 2.4

Table 2: Average of daily error load forecasting in each month of year 2000 for INPS

Month number

Time periods 1 2 3 4 5 6 7 8 9 10 11 12 AVE
Low load hours 24 1.9 1.5 2.2 1.7 17 16 1.1 1.9 21 1.6 17 18
Ordinary load hours 24 1.7 14 28 13 leo 13 1.1 1.6 1.9 1.5 1.7 1.7
Peak load hours 1.7 1.5 14 3.0 1.6 1.8 14 13 1.6 1.6 14 1.1 1.6
Total error with MLP 22 1.7 14 2.6 14 17 14 1.1 1.7 1.9 1.5 16 1.7
Total error with MLP and FIS 13 1.5 1.0 1.5 14 0.8 1.4 1.1 1.7 1.7 1.2 1.1 13
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Designed load forecaster results for load variation
factors (temperature changes and special holidays)
are shown 1 Fig. 9-11. These figures clearly
demonstrate the capabilities of the proposed fuzzy
modifier for improvement of the forecasted load for
special days.

CONCLUSION

In this study, we have designed an intelligent load
forecaster using NN and fuzzy modifier for the famous
STLF problem. The MLP precisely forecasts load values
in normal conditions. We have trained MLP using the
LMBP by using ES method to have a higher convergence
rate. In special cases such as abrupt changes in weather
conditions or special holidays, a FIS 1s used to improve
initial forecasted loads. The results of load forecasting
should satisfy Tran Electricity Marlcet Rules. Simulations
results for INPS and BREC easily approve the capabilities
the proposed STLF for the Islamic countries. Reshaping
the load shapes by charging the peak load will be
addressed in near future.
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