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Abstract: This study presents a closed form solution around underground openings based on the four rock
failure criteria. The results of the closed form solution are compared to the numerical method to establish the
solution. The Tresca, Mohr-Coulomb, Mogi-Coulomb and generalized Hoek-Brown failure criteria are used to
determine stress distribution and plastic zone around the circular space. The solutions are implemented in three

dimensional distinct element code (3DEC) and assessed mumerically. Also, the parametric study using these
criteria 1s presented. Results show that the Tresca failure criterion does not fit in rock mass problems. Because
of the employing axial stress, the Mogi-Coulomb failure criterion fitted the numerical results, appropriately. It
was observed that increasing the axial stress using Mogi-Coulomb failure criterion decreases the stress

distribution and the plastic zone, sigmficantly.
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INTRODUCTION

During excavation in rock mass far-filed in situ
stresses are redistributed and cause a plastic deformation
around the opemings such as tunnels, shafts, wellbores
etc. Analytical
elastoplasticity which have been used mn previous texts
(Carranza-Torres and Fairhurst, 1999; Chen et al., 1999,
Hoek and Brown, 1980; Li and Michel, 2009,
Detournay, 1986, Carranza-Torres, 1998). Alani (2002) and
Alam and Nasser (2001) developed a new cubic
macro-element and quadratic analyses for plate with a
hole under bending and compared with closed form

solution m this case mvolves

solution, respectively. Exact determination of stress field
n elastoplastic solution requires appropriate rock failure
criterion. The medium in elasto-plastic solution for circular
space presumed homogenous, compressive and isotropic
far-filed stress that subjected to nternal pressure, P, that
applied in plane stram condition (Carranza-Torres and
Fairhurst, 2000; Muhlhaus, 1985; Hoek, 1998; Malvern,
1969). Closed form solution of GRC implementing in
convergence-confinement method by elasto-plastic model
are among the most broadly used for general design
evaluation, especially regarding excavations and support
design. Taha et al. (2009) applied the Mohr-Coulomb
material and simulated stress distribution around a pile in

cohesion less soil. Tt was found that dry soil condition
gives more resistance than others. Stress concentration
analysis around a wellbore showed that in addition to
rock-mud interaction drilling string vibration could cause
many problems (Ibralum ef al., 2004). Macro element
analysis and closed form solution of stress distribution
around cavities m plate bending were modeled and had
excellent results with regards to conventional finite
element solutions (Al-Ani, 2010).

The Mohr-Coulomb criterion (M-C) was the most
common criterion that has been used mn elasto-plastic
solution of stress state around openings (Florence and
Schwer, 1978). However, The Hoek-Brown criterion (H-B)
could find wide practical application as a method of
describing the stress condition in rock mass surrounded
the opening. Hassami ef al. (2008) presented a 3D finite
element analysis of Siah Bishe tunnels by using ABAQUS
software. It was observed maximum displacement occurs
in the roof of the tunmels. Stress concentration was
intensified in transition zone of tunnel and shaft. The rock
mass condition under which Hoek-Brown criterion can be
applied is only intact rock or heavily jointed rock masses
that can be considered homogenous and isotropic
(Hoek et al., 1998). The Classic Tresca criterion related the
difference between maximum and minimum principal
stresses to the cohesion without friction, like Von Mises
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(Hill, 1950). Stress analysis and hydro mechanical
behavior of the Bisotim epigraph showed that
heterogeneity is one of the most significant factors on
hydraulic and mechanical properties of rock mass
(Karimnia and Shahkarami, 2011). Fatigue behavior of a
cylindrical hole in piston was studied by Rahman et al.
(2009) using the Tresca and Von Mises materials. Tt was
observed that more conservative prediction to use Signed
Tresca parameter and Signed von Mises stress gives the
result that lie between the absolute maximum principal
stress and signed Tresca results.

Most of the cited failure criteria which applied in
rock mechanics were extended before the function of
the intermediate principal stress was evident.
According to experimental data has shown that the
intermediate principal stress has a substantial-although
slight-influence on the strength of several rock
classes (Colmenares and Zobaclk, 2002; Mogi, 1967). The
Mogi-Coulomb Criterion (MG-C) clearly showed the
umpact of intermediate principal stress that was based on
linear Mogi criterion in terms of first and second stress
invariants  (Al-Ajmi  and Zimmerman, 2006). A
mathematical model for couple coalrock mass
visco-elastic deformation was presented by Sun (2006). Tt
could properly show the gas leak flow in these mediums.

This study concerns analytical solution of stress
distribution about an underground circular space via four
rock failure criteria includes the generalized Hoek-Brown,
the Mohr-Coulomb, the Mogi-Coulomb and the Tresca
criterion which implemented in 3DEC by means of a FISH
program. The aim of this paper was to compare
elasto-plastic solution of the rock failure criteria
numerically in the 3DEC. Advantages and deficient of
each criterion is presented. In addition, parametric study
of the rock failure criteria in elasto-plastic solution has
been carried out.

FOUR ROCK FAILURE CRITERIA

The Tresca criterion: After a series of experiments,
Tresca achieved that the material will failed when a critical
amount of shear stress is reached (Tresca, 1868):

(1)

1
Ty = =0 -G35)=C
561 -03)

p

where, C 1s the cohesion and T, 15 the maximum shear
stress of the material. Notice that the Tresca criterion can
be considered as a particular type of the M-C criterion,
with ¢ = 0.

The generalized Hoek-Brown criterion: The generalized
H-B criterion concerns the maximum principal stress, g, to
the mimimum principal stress, 0, via Eq. 2:
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(2)

G
6,=6, + 6. (m—=+8)°
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where, 0, 13 the Uniaxial Compressive Strength (UCS) of
intact rock, m, s and a are constants which depend on the
rock mass properties:

_ GSI-100 (3)
" m‘eXp(zs-MD)
_ GSI-100 (4)
s=exp ( T ’]

GBI
135

a= 0.5+ e S0 - exp(- 2 (5)

where, m, is the value of m for intact rock and can be
obtained from laboratory tests. While, D is the
disturbance factor which varies from 0.0 for undisturbed
rock masses to 1.0 for very disturbed rock mass e.g., by
stress release and drill-blast. The Geological Strength
Index (GSI) introduced by Hoek indicates the
characteristic of the rock mass (Hoek, 1994).

The Mohr-Coulomb criterion: A more general and
frequently used criterion 1s the Mohr-Coulomb failure
criterion. Failure will occur when in any (failure) plane the
shear stress, T reaches the failure shear stress, T,,.. which
1s given by a functional relation of the form:

(6)

T — € T O tang
where, ¢ is the cohesion of the rock mass, ¢ is the
internal friction angle of the rock mass and o, is the
normal stress working on the individual failure plane.
The M-C criterion can be written with regard to the
maximum and minimum principal stresses as follows
(Benz and Schwab, 2008):

o = 2ccosp N
' {1-sing)

7

tan2(§+45)

The Mogi-Coulomb failure criterion: All three rock
failure criteria considered above, did not take mto account
the influence of intermediate principal stress and
determmed from triaxial tests. Mogi’s experumental
attempts revealed that rock strength vared with the
intermediate principal stress, 0, which was obtained from
polyaxial (True-Triaxial) tests (Mogi, 1971). He related the
octahedral shear stress at failure to the sum of the
minimum and maximum principal stresses

(8)

N
R
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where, fis a monotonically increasing function. The MG-C
criterion can be stated as:

9

o, +c
T =3+ H——)

According to Al-Ajmi and Zimmerman (2006) the
linear Mog1 parameters a and b can be related to the
Coulomb shear strength parameters ¢ and @ then can be
extended as follows:

(10)

2z 22
a= choscp and a = Tsmq)

STRESSES AROUND CIRCULAR SPACE BY
ELASTO-PLASTIC SOLUTION

Elasto-plastic solution around circular space using the
Tresca failure criterion: The elasto-plastic analytical
solution is commonly carries out for simplified models.
Consequently as shown m Fig. 1a circular space 1s utilized
in plane strain condition which subjected to isotropic
stresses, o, and o0, at infinity and internal pressure P;.
Then, R, 1s the primary radius of the inderground space;
R, is the plastic zone radius; R and 6 are the cylindrical
coordinate of an assumed location, while o, and o4 are the
related radial and tangential stresses, respectively.

According to equilibrium equation (Taeger et al.,
2007):;

do G, -Gy _
dr

(1)

0
r

And it i1s assumed that g, o, will be o0, and o,
respectively. The Tresca failure criterion (Sec. 1.1) then
requires:

G, - Op = 0,,0, =1C (12)

(il

in the plastic zone (R<R<R,). Introducing Eq 12

mto Egq. 11 the stresses at boundary condition are
given by:
Cr :Gc1n£+Pi (13)
Rl
cra=crc(lnR£+1)+P1 (14)

i

As the Tresca criterion does not comprise the
mtermediate principal stress the hydrostatic ground
pressure 0, = 0, is assumed to solve the problem.
Therefore, the induced stresses in the elastic region can
be found i Hiramatsu and Oka (1968) as follows:
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Fig. 1: The circular space subjected to isotropic stresses,
0, and g,; internal pressure, P,

(15)

R,
o =0, - (0, - URE)(?E)E

Re
R

(16)

)2

Gy =0, +(0, -0, ) (

where, 0y, 15 the radial stress at elastic-plastic interface 1.e.
(R = R.). From Eq. 15 and 16 at this interface it can be
obtained:

(17)

Gg. T Op. =20,

Substituting Eq. 17 inte Eq. 12 the induced radial
stress can be determined as follows:

60, % as)
2

The plastic zone radius is determined from Eq. 18 and
13 as:

o -PB 1
R, = Rexp(~t—+-2)
G, 2

(19)

Assumed the circular space with R, = 1 m and
0, = 0, = 30 MPa. Figure 2 illustrates the effects of internal
pressure P, on the plastic zone radius around the circular
space by the Tresca criterion for three types of rocks. The
plastic zone radius decreases by mcreasing of UCS, while
internal pressure exceeds ground pressure, the results
become vice versa. For an invariable UCS, increasing the
internal pressure P, decreases the plastic zone radius R,
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Fig. 2. The effects of internal pressure on plastic zone

radius at different compressive strengths
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Fig. 3: The effects of hydrostatic ground pressure on the

plastic zone radius at different compressive
strengths

Figure 3 displays the effects of ground pressure,
0, = 0, on the plastic zone radius by the Tresca criterion
for three types of rocks where internal pressure P, is
10 MPa. An increase in ground pressure leads to increase
in the plastic zone radius in an invariable UCS. Tt can be
seen that increasing UCS tends to decrease i the plastic
zone radius.

Elasto-plastic solution around circular space using the
generalized H-B failure criterion: In the plastic region,
radial and tangential stresses can be found.

Thus, induced stresses by introducing Eq. 2 into
Eq. 11 are as follows:

1

-2 )1,
Ga_q[m(l-a)1n§+|:mp‘+s} } -si (20)
m 5 Gc m
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The rads of plastic zone can be determined from
Eq. 17 and 20 that will be expressed as:

Oy =0y +0, {m

Nil= exp(-(ln(exp(w
a

)-s)a*-0.7- I Lyya) xo,
SC

exp(0.7 +In(P, /5. 1)

N2={ (22)

Pm +s0,
(a1 i f
)-5) XSGJP,(U—

)(a-ll xm
a

NL+N2+{Pm+s0_)o, J*Y xs0.)
=R;{ )
mo,(a-1)

R

e

All the parameters in this paper were assumed, where
the ground pressure P, is equal to hydrostatic stresses
0, = 0y Figure 4 shows the effects of GSI and D on the
plastic zone radius by the H-B failwe criterion
around circular space for different rock types where,
m; =4, P,=10MPa, ov =ch= 30MPa and o, = 20 MPa.
An mcrease in the D factor for the certan GSI
leads to mcreasing of the plastic zone radius.
Whereas increasing the GSI decreases the plastic
zone radius.

Figure 5 shows the effects of internal pressure on the
radius of plastic zone by H-B failure criterion for different
rock types where, 0, = g, = 60 MPa, m, = 4, 0, = 20 MPa
and D = 0.1. It can be understood with increasing of
internal pressure the plastic zone radius will decrease
in a certain GSI. Figure 6 displays the influence of the
GSI on the radial stress around circular space for
different rock types with o, = o, = 50 MPa, m; = 4

El

g, = 20 MPa. It can be observed the radial stress
around circular space will decrease when GSI
increases.

The mfluence of ground pressure on tangential stress
around circular space has been showed in Fig. 7 by the
H-B failure criterion with P, = 0, o, 20 MPa, D=05
and GSI 20. It can be noticed that for a certain
ground pressure the mcreasing of m, will decrease the
tangential stress. On the other hand when the ground
pressure increases for a fixed m; the tangential stress
raises.

Elasto-plastic solution around circular space using the
Mogi-Coulomb failure criterion: As pomted out in Sec.
1.4 the strengthening effect of the intermediate principal
stress can be taking into account by utilizing the
Mogi-Coulomb formula. In terms of first and second
stress varients [, and I, defined by Al-Ajmi and
Zimmerman (2006):

I, =06,+0,+06,,1,=006,+0,6,+06,0,

(23)
(Il2 '312)10 =a+b(l -5,)
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6. The influence of D on the radial stress at different
(8 around circular space using the H-B failure
criterion
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Fig. 7. The influence of ground presswre on the

tangential stress at different mi around circular
space using the H-B failure criterion

Since the maximum and minimum principal stresses,
o, and 0, are corresponded to g, and 0, around the
underground circular spaces then intermediate principal
stress will be 0, = 0, along the circular space axis. In plane

strain condition (g, = 0) the axial stress, 0, can be
determined as follows:
G, =0, -2vo, +v(c, +0,) (24)

where, o, 1s the axial in situ stress, v is the Poisson’s
ratio. In hydrostatic ground pressure around the
circular space, o o, 0, the Eq. 15 can be
rewritten as:

v

(25)

6 =(1-2v)o, +v(c, +0,)

The radial stress in this case can be determined
through Eq. 23 and 11 as follows:
D1=b*%? +v-vi + b +2bv-1
— o R
D2-= ZIn(R.)

b*P v +Pv- (P

-b*v?) - 0.5(b?F, - abv - 0.5, +b2PDv))

( D1

R v -bv-v-ba
D3=In{—}————

(e )( 1 )
D4 = (4b* - 48b *P,*v +48b7Bv?

-12B%v + 24Pv)

+12abP, -3P; +12P*v

D5 =-36abP,v + 4a’ +12b7B,? - dva? + 4v?a’ + 4ab - 8abv?
+24Pv’ba + 8b'v

D6=-24P,v - 6P +12v -12v* + 24b7Bv - 48b°P)v*

5p = (D2 +D3) % (D4 +D5 + D6+ 20abv +16b%v,)"” -ln(Ri)

i

(26)
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Fig. 8 The influence of axial stress on the plastic zone
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circular space by the MG-C failure criterion
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Fig. 9. The influence of compressive strength on the
plastic zone radius at different Poisson’s ratios
around circular space using MG-C criterion

Substituting Eq. 26 and 25 into Eq. 23 the tangential
stress around circular space using MG-C criterion can be
found as:

F1=-0.5(2ba- 2P, +20, +2b* - (4bas -8baP, +8b’c, P, +4b’c,? +4b°P}
G, =Fl+4a° +60,b-30,” -126, P, -12F, -3a +12ab+12b")*)(b* -1)

27

As stated mn previous sections the plastic zone radius
15 obtained using continues equations (0, = 0y) at
elastic-plastic interface. Figure 8 represents the influence
of intermediate principal stress (axial stress) on the plastic
zone radius around the circular space based on the MG-C
failure criterion. The features of the circular space and
rock mass assumed as R, = 1 and cohesion C =3.45
MPa, v = 0.23 and ¢ = 30°. It can be understood that an
increase in intermediate principal stress in a certain
internal pressure, causes decreasing the plastic zone
radius.
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Fig. 10: Variation of the plastic zone radius under

mcereasing rock cohesion at different fricton
using the MG-C criterion

Figure 9 indicates the effects of the Poisson’s ratio
and umaxial compressive strength on the plastic zone
radius around the circular space by using the MG-C
failure criterion for different rock strengths. In this case,
the internal pressure P, is 10 MPa, ground pressure 0y, = 0,
is 30 MPa and the initial radius of underground space R
is 1 m. Tt can be obtained that the plastic zone radius
increases by increasing of the Poisson’s ratio in a
particular UCS. Alsoin a fixed Poisson’s ratio an increase
m UCS decreases the plastic zone radius. As illustrated in
Fig. 10 when cohesion of the rock around the circular
space increases, in a fixed friction angle the plastic zone
radius decreases. On the other hand by increasing friction
angle the plastic zone radius decreases subsequently.

NUMERICAL ANALYSIS

As a common criterion the elasto-plastic solution for
the circular space using M-C failure criterion has been
given in Salencon (1969). For thus reason the solution has
not mentioned in the previous section. Here, the analytical
solution of the Tresca, generalized H-B, M-C and MG-C
failure criteria implemented in 3DEC using a FISH program
(TTASCA, 2003). Because of axisymmetric and plain strain
conditions only one-fourth of the sketch in the Fig. 1 has
been modeled.

All the parameters in these solutions were assumed,
where the imitial radius of the underground circular
space R, is 1 m, the in situ stress 0, = 0, is 30 MPa and
the internal pressure P, is 5 MPa. The compressive
strength of rock mass o, is 50 MPa, constant parameter m
15 4.5, the Geological Strength Index GSI 15 40, the
Poisson’s ratio v 1s 0.22, cohesion C 15 3.45 MPa and
internal friction ¢ 1s 30°. Figure 11 compares the results
of the generalized H-B and Tresca failure criteria with the
3DEC.
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Fig. 11: The comparison of the radial and tangential stresses using the Tresca, the generalized H-B criteria with the 3DEC
around the circular space

(E+007) 3DEC (Version 3.00)
7.0
TABLET PLOT
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Fig. 12: The comparison of the radial and tangential stresses using the MG-C, the generalized H-B criteria with the 3DEC
around the circular space
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Fig. 13: The comparison of the radial and tangential stresses using the MG-C and M-C criteria with the 3DEC around
the circular space
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Fig. 14: The nfluence of mtermediate principal stress using MG-C criterion (0, = 10 and 0, = 15) on the stress distribution
around the circular space
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Table 1: The plastic zone radius around the circular space using four rock failure criteria compared with 3DEC

Mogi-Coulomb
Generalized
Rock failure criteria Tresca Hoek-Brown Mohr-Coulomb o, = 10 MPa 0, =15 MPa 3DEC
The plastic zone radius, R, (m) 4.5 1.045 1.73 1.72 1.45 1.55

It can be seen that stress distribution around the
circular space using the generalized H-B criterion (the
tangential stress in turquoise line and the radial stress in
blue line) is close to the 3DEC (the tangential stress in red
line and the radial stress in green line) than the Tresca
criterion. Because the Tresca criterion does not concerm
with internal friction of the rock mass then it cannot be
used in rock properties determination and the elasto-
plastic solution around the underground spaces.

The results of the generalized H-B and MG-C failure
criteria, compared with the 3DEC have shown in Fig. 12.
The stress distribution around the circular space using
the MG-C criterion (the tangential stress in turquoise line
and the radial stress in brown line) is more similar to the
3DEC than the generalized H-B criterion.

In Fig. 13, the comparison of stress distribution using
the MG-C and the M-C criteria has represented. The both
results of critenia are sumilar to the 3DEC, completely. The
effect of intermediate principal stress (axial stress in this
case) is illustrated in Fig. 14. Tt can be discerned that an
increase m ntermediate principal stress from g, = 10 MPa
(the tangential stress in turquoise line and the radial
stress in brown line) to 0, = 15 MPa (the tangential stress
in cyan line and the radial stress i red line) increases the
stress distribution around the circular space using the
Mogi-Coulomb (MG-C) failure criterion.

The plastic zone radius around the underground
circular space using four rock failure criteria are given in
Table 1.

It can be found that the Tresca failure criterion
overestimated the plastic zone radius more than other
criteria and an increase in axial stress using MG-C failure
criterion tends to decrease of the plastic zone radius. The
generalized H-B failure criterion evaluated the least
amount with regard to other criteria and numerical
analysis in 3DEC.

CONCLUSIONS

Elasto-plastic  analytical solution of  stress
distribution around the underground circular space using
four rock failure criteria has been given. The followmng
consequences attained:

*  The Tresca failure criterion overestimated the stress
distribution and radius of the plastic zone around the
underground circular space. Because of neglecting
mternal friction, this criterion does not answer the
rock mass problems

+ Increasing of uniaxial compressive strength, GSI, m,
and internal pressure P, decreases the plastic zone
radius and the nduced stresses while an increase in
ground pressure P, disturbance factor D and
Poisson’s ratio v increases the induced stresses and
the plastic zone radius around the underground
circular space

*  Numerical analysis of elasto-plastic solution using
four rock failure criteria has been carried out using
3DEC. The criterion that has closest fitting to 3DEC

Mohr-Coulomb, Mogi-Coulomb  and
generalized Hoek-Brown failure criterion, respectively

¢ The advantage of Mogi-Coulomb failure criterion to
the others is that comprising the axial stress
(intermediate principal stress) in this criterion. Tt was
declared that an increase in axial stress increases the
stress distribution while decrease the plastic zone

was the

radius

»  The generalized H-B failure criterion estimated the
smallest amount of the plastic zone radius vis-a-vis
other criteria and 3DEC
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