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Abstract: The aim of this paper is to present scme common fixed pomt thecrems for C;,-contractions in a
complete metric space. Finally, some results for contractions of integral type are given.

Key words: Common fixed point, complete metric space, weak C-contraction

INTRODUCTION

The concept of C-contraction was defined by
Chatterjea (1972) as follows.

Definition 1: A mapping T:X—>X where (X, d) is a metric
space is said to be a C-contraction if there exists ¢e(0,1/2)
such that for all x, yeX the following inequality holds:

d(Ta,Ty) <ofd(x,Ty) + d(y,Tx)).

Chatterjea (1972) has proved that, if (3{, d) is a complete
metric space, then every C-contraction on X has a unique
fixed point. Choudhury (2009) mtroduced a generalization
of C-contraction by the following defimtion.

Definition 2: A mapping T:X—X, where (X, d) is a metric
space 1s said to be a weakly C-contractive mapping 1if for
all x, ye3X:

d(Tx,Ty) = %(d(&TY) +d(y. Tx)) - ¢((d(x, Ty).d{y,Tx))

where, @:[0,=Y—~[0,e) is a continucus function such that
@x,y)=01fand only ifx =y = 0.

Choudhury (2009) has proved that, if (3, d) is a
complete metric space, then every weak C-contraction on
X has a unique fixed point.

For a survey of fixed pomnt theory and related results
we refer to Mujahid and Dragan (2010), Zhang and Song
(2009), Moradi et al. (2011), Doric {2009), Nashine and
Samet (2011), Mohamadi et al. (2009), Okoroafor and Osu
(2006), Olaleru (2006) and Tiwari et al. (2012).

Let us note that the beautiful theory of fixed point is
used frequently in other branches of mathematics and
engineering sciences (Shakern et al., 2009).

The purpose of this study is to obtain a common
fixed point theorem for four maps satisfying a certain
contractive condition. Owur result generalized the results of
Chatterjea (1972) and Choudhury (2009).

Throughout this paper, let:

Q= {@|@:[0,=¥— {0,°) is a continucus functicn such that
exy)=0iffx=y=0}.

Definition 3: (a) Let (X, d) be a metric space and
T3 XX Ifw=Tx=8x, for some xcX, thenx 1s called a
coincidence point of T and S and w is called a point of
coincidence of T and S, (b) Let T and S be two self-
mappings of a metric space (X, d). T and 3 are said to be
weakly compatible if for all xeX the equality Tx = Sx
implies TSx = STx (Beg and Abbas, 2006).

MAIN RESULTS

Definition 1: Two mappings T,5:X—X, where (X,d) 1s a
metric space are called weakly C; -contractive (or weak
C;~contraction) if for all x, yeX,

d(Tx,Sy) g%(d(fx,Sy) + d(ey Tx))— d(d(Fx Sy)diey, Tx)) (1)

where, ¢efl.
Following 1s the mam result of this study.

Theorem 1: Let (X, d) be a complete metric space and
let E be a nonempty closed subset of X Let
T,5: X=X be two weakly C;-contractive mappings
(condition 1):

I  TEcgE and SEc{E.
I The paws (3, £) and (T, g) be weakly compatible.
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Assume that f and g also are continuous functions

on X. In addition, for all xeX:

(2)

d(fTx, Tfx) =d(fx, Tx) and d(gSx,Sgx) <d(gx,5x)

and for all x, yeX

d(fex, ofy) = digx.fy) 3

then, T, f, S and g have a unique common fixed point.

Proof: Lot x,€E be arbitrary. Using (I), there exist tow
sequences {x,}%,,{y,J°, such that y, = Tx, = gx,, y, = 8x,
= fx,, ¥e = TXe = 8Xooos Yoo = TR = 8Xparts Yot = SXaney =
Xz

We complete the proof mn two steps:

Step 1: {y.} 13 Cauchy.

1
= E(d(fxzhz By )+ g%y 0T ) — Gld(Exy, 0. 8% 5, ) d(gX0,0, Txy 0 )

1 1
= Ed(Y?_k sYapiz) — 000,d(yo ¥ 540 ) = Ed(YZkH »Yapsa )~ $0.40¥ 500 ¥arie )

Comnsider two cases as follows:
If for some n, v, = V.., then v,,; = y,.,. If not, then
Vir1 2V Let n = 2k Therefore, using condition (1),

we have:

Y szo ¥ ) = HTK 8%, )

1
= 3 (A0 o> Yo )+ A0 Yor D — O (op s Yo 1 A(¥ 200 ¥ 000 )

1
= Ed(Y2k+1 2V za2)

which is a contradiction. Hence, we must have y.., = Y.,
when, n 1s even. In a same way we can show that this
equality holds, when n 15 odd. Therefore, mn any case, if
for an n, y, = v,.,, we always obtain y, = v,.,. Repeating
the above process inductively, we obtain that y, = v, for
all k>1 Therefore, n this case {y,} is a constant sequence
and hence is a Cauchy one.

1
= E(d(fxzwsxzkn) gy Ty ) — §ld(l gy, 85y, hd(gxy, , Txy, )

If v, #V.0, for every positive integer n, then for n =
2k, using condition (1), we obtain that:

A Y )= HTxy By

1
= E(d(hlﬂ o) F A 0¥ ) = WA s Yo 1Ay ¥ )
1
= Ed(Y2k—1>y2k+1)

1
< E(d(YQk_l Vo) F Ao Yo
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Hence,
Ay g ¥ ) S (¥ ¥ ay)

If, n = 2k+1, similarly we can prove that:
1 1
A¥ap2-Y2a) SEd(yzwyzm) = E(d(yzk’yzka Iy Vo))

That 1s:
Yoz Yo ) € A s> ¥ )

Therefor, in general, d(y,.,, vy, 13 a decreasing
sequence of nonnegative real numbers and bounded from
below and hence it is convergent.

Assume that:

lim ool (¥, ¥, ) =T

From the above argument,
1 1
WY pr V) = Ed(yzlﬂ Yaa) = 3 (¥ 2> Y2+ (T Yo D
and if k—<c, we have:
o1
r = lim _d(YQk,l »¥ard ) L9
k—on 2

Therefore:
limd{y 3y ¥ 200 ) = 21
k—w
We have proved that:
1
(¥ oy Yo ) = E(d(YZH ¥arad T (Y2 Y2 )
= O(A(Y gpt> ¥ ¥ 3 ¥ 1)

Now, if k= and using the continuity of ¢ we obtain
r <llr— o(2r,0)
=3 g

and consequently, @(2r, 0) = 0. This gives us that,

r=lim, 4,0 7,)= 0 )
by our assumption about .

Now, it is sufficient to show that the subsequence
{vat 18 a Cauchy sequence. Suppose opposite, that is
{3t 18 not a Cauchy sequence. Then there exists € >0 for

which we can find subsequences y,,,y and yyu of y,
such that n(k) is smallest index for which n(k)>m(k) and:
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d(Y2m(]c)’Y2n(k]) ZE. (5)
This means that:
d(Yzm(kj>Y2n(kj—2)< & (6)
From (5) and triangle inequality:
& L d(¥ s Yanio) = W gy »Fami2)
+ d(¥aum20 Yoo ) T 9 2a01> Yoo )
<&+ d(an(k)-z =§"2n(1<)-1)Jr d(YZn(k)-1=Y2n(k) »
Letting k—c and using Eq. 4 we can conclude that:

limd(y2m(k)’y2n(k)): & (7)
e

Moreover, we have:

(Y st Yamt )~ I s ¥ 1 Y s Yangn) (8)
and

1A a1+ Y 2mr 1)~ O s Va1 Wy 1 Vo) ()
and

| d(Yzm(k)—2>Y2n(kj )= d(Yzm(k)—hYzmkj )= d(Yzm(k)—z » ¥ 2m(ig-1 ) (1 0)
Using Eq. 6,7, 8, 9and 10, we get:

TmA(Y 2011 23 200 ) = M 2iy15 ¥ 2t}
koo k=

= limd R =g
11(1:2, (¥ 2aaq19-22 Y2 )

Using Eq. 1 we have:

d(Yzm(kH > ¥oniry )= d(TXZn(k) 7SX2m(k)—1)
Sé(d(fxzn(k) RS SWRED R - SRR E W)
- ¢(d(fx2n(k) RS> SHp )=d(gX2m(k)—1 TR o n
= % (A 300191 ¥ 2010 1+ A 220 Fouey V)

- ¢'(d(YZn(k)—1 » ¥ o ), d(YZm(k)-z > ¥anw) )

Making k—e 1in the above inequality and taking into
account (10) and by the continuity of @, we have:

as%(a+a)—¢(a,a)

and hence, @(e, €) = 0. By our assumption about @, we
have & = 0 which 1s a contradiction.

Step 2: Existence of coincidence point and common fixed
point.

Since, (X, d) 1s complete and {y,} i1s Cauchy, there
exists zeX such that lim . y, = z. Since, E 18 closed and
{y.+cH, we have zcE.

Also, we know that

2= limY¥ oy, = limfX,, 5 = limS%
b nees 1o
~limyz, = limgXa, = J\ETXZn'

Since, f and g are continuous,

fy, > fzgy, Sgz (1 1)

On the other hand, from 2 and 3 we conclude that:
d(Ty,, . .82) 2d(Tyy, .5y, ) + A8y, . o) + A8y, .82)
= d(Ttxy, . 1Tx,, ) +difex,, 50t 5 )+ d(gy,, 4 .82)
2 (TR0, Wonn ) + d8Xgnz, Wonn ) + d(8Y 2001.82)
= d(¥22- ¥aun )+ WY 22> Y ouu ) + H8Y2041,82)-

Therefore, from 4 and 11:

limd(Ty,.,.g2) = 0. (12)

Also, using 2 we have,

ATy 30 12) = A(TY 301, T opia ) + Ay 2000, £2)
= d(Thxy,, 5,8y, ) + d(fyy, 0. 2)
Sd(TX gz K000 ) + d(fy o,0.12)
= dlyou . Yo ) + dify g, 0. f2).

Therefore, from 4 and 11:
lg?od(TYZn+l5fZ) =0. (1 3)
From Eq. 1:

1Y 100,52 £ (00510, 52) 1 @2 TY )
(8.0 52), 0022, Ty )

If m the above mequality, n—ee, from 11 and 13 we
have:

d(fz,82) s%(d(fz,Sz) +0) - §(d(£z,92),0).

So:

%(d(fz,Sz)) <-0((d(fz,52),0))
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and hence, Sz = fz. We can analogously prove that difer.gfy) <d(gxfy).
Tz=gz.
Also: Now, we have the following four cases:
!‘ijl;lod(TYmﬂng) = }lgl'ilnd(TY2n+1>fZ) =0 N X,yGX(-W, 0) Then we have
consequently: fz= gz, therefore Tz=gz=fz=sz=t d(Tx,8y) = - | x|
Now we show that z 1s a common fixed point. . 16
Using weak compatibility of the pair (T, f) and (S,g) S1x 010+ /16
cs
we have Tt = ft and gt = St. So, 8
|%x70\+\0+x/16\ |§x70|+|0+xf16\
A(Tt, 1y = d(Tt,52) S%(d(ﬁ,sz) +d(gz, Tt — d(d(ft, 82), d(gz,TH) - 1 - 8
1 1
:%(d(Tt,t)+d(t,Tt))f¢(d(Tt,t),d(t,Tt)). <\Ex70|+| 0+x/16| ) \Ex70\+\0+x /16|
a 2 8
_1 _
That is, @(d(T, St), d(t. T)) =0 and this implies that =5 @ 8y) + dley.Tx)) - od(Ex Sy).d(gy. Tx)).
Tt=t. Therefore ft =Tt=t
Analogously,

»  x2(-c0, 0) and y£[0, ). Then we have

d(t,8t)=d(Tz,8t) sl(d(fz,St) +d(gt, Tz)) — ¢{d(fz,81),d{gt,Tz)) 1

2 d(Tx,Sy):E\X\

= l(d(t,St) +d(St, t)) — o (d{t,St) +d(St,t)) 1

2 S|x=0l+ly/24x/16]
<

8
That is, ¢(d(t, St), d(St, t)) =0 and this implies that St 1 1
-t Therefore, ot = St=t :\EX—0|+\)H’2+X/16\ 7‘EX—0|+|y/’2+X1”16|
Hence, gt = St=t=ft = Tt. 4 &
It 15 easy to show that t 1s unique. |%x—0\+|y/2+x/16| |éx—0\+\ v/2+x/16]
S —_
2 8
Example 1.: Let X = R(The set.of all real numbers) be L (e Sy) + digy, Tx)) - d(d(Ee Sy d(y, Tx)
endowed with the Euclidean metric. Suppose that T:X—X z
1s defined by:
o xye[0, o) . Then we have
-x /16, —w=x<0,
T(XF{
0, 0=<x <o,
d(Tx,8y)=0
10-0]+]y/2-0]
and Sx = 0 for all xcR. = g
We define functions f, g: X=X by: _10-0]+|y/2-0] [0-0|+|y/2-0|
4 8
ooy [x72, —osxso, 0-0+]y/2-0] J0-0/+]y/2-0]
(X)f{o, 0xze, . 2 8
= (difx 8y) +d(gy. Tx)) - 0{d(fx.Sy).d(gy. Tx)).
and:
0. o<, o xe[0, o) and ye(-es, 0). Then we have:
g(X)={
x{2, 0<x<aw,
d{Tx,8y)=0
) [0-0|+|y/2-0]
and function @:[0,s ¥ [0.=)by @(t.s) = t+s/8. = g
One can easily obtains that for all xeX _|0-0]+|y/2-0] |0-0]+|y/2-0]
4 8
d(fTx, Tfx) =d(fx, Tx) and d(gSx,8g%) =d(gx,8x), N0-00+y/2-0] |0-0]+|y/2-0]
2 8
and for all x,yeX, = %(d(szSY) +d{gy,Tx)) - 0(d(fx,Sy).d(gy,Tx)).
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So mappings T and S satisfy relation (1) and all
conditions of Theorem 1 are holdand T, 5, f and g have a
unique common fixed pomnt (x = 0).

Taking £ = g in Theorem 1, we obtain the following.

Corollary 1: Let (X, d) be a complete metric space and let

E be a nonempty closed subset of X. Let T, S are such
that for all x,yeX:

d(Tx.8y) < %(d(fx,Sy) + dify, T — d(dif 8y) diiy, Txy) (14

where, T, S and f be such that:

TEc(E and SEc{E.
The pairs (T, f) and (T, g) be weakly compatible.

Assume that  1s a continuous function on X. In
addition, for all xeX:

(15)

d(f T, T1x) = ditx, Tx) and d(fSx,813) <d(f,8x)

and for all x yeX

(T, Ty) < d(fx,fy) (16)

then, T, fand S have a unique common fixed point.
Taking T = S in Theorem 1, we have the following
result.

Corollary 2: Let (X, d) be a complete metric space and let
E be a nonempty closed subset of X. Let T:X—X be such
that for all x,ye3

d(Tx,Ty) S%(d(fx,Ty) + d(ey Tx¥ — d(difx, Ty),d(ey,Tx)) (1 7)

where, T, f and g be such that:
*  TEcfE and SEcgE.
*  The pairs (T.f) and (T,g) be weakly compatible.
Assume that f and g also are continuous functions
on X. In addition, for all xeX:

(T, THx) < d(Be, Tx) and d(eTx, T g < d(ex,Tx), (18)
and for all x yeX
d(fex.gfy) =d(ex.fy) (19

then, T, fand g have a umque common fixed point.
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Taking T = S and = g in Theorem 2.4, the following
result is obtained.

Corollary 3: Let (X{.d) be a complete metric space and let

E be a nonempty closed subset of X. Let T:X—X be such
that for all x,yeX:

d(Tx,Ty) < % ¢, Ty ) + dify, Tx)) — ¢(difs, Ty, d(fy, =) (20)

where, T and f be such that:

TEc {E.
The pair (T, f) be weakly compatible

Assume that T also 1s continuous on X. In addition,
for all xeX{:
(21)

d(fTx, THx) = difx, Tx)

and for all x,yeX,

A%, £2y) < d(fx, ). (22)

Then, T and f have a unique common fixed pomnt.

Remark 1: Taking T = 8 and f = g = 1, (the identity
mapping on X) and X = E in Theorem 1, we obtain the
result of Choudhury (2009) which has been mentioned
above.

APPLICATIONS

In this part, from previous obtained results, we will
deduce some common fixed point results for mappings
satisfying a contraction condition of integral type in a
complete metric space.

Branciari (2002) obtamned a fixed point result for a
single mapping satisfying an integral type inequality.
Afterwards, Altun et al. (2007) established a fixed point
theorem for weakly compatible mappings satisfying a
general contractive mequality of mtegral type.

Stmilar to Nashine and Samet (2011), we denote by T
the set of all fimctions @:[0,+e0)—=[0,+<) satisfying the
following conditions:

s (@ is aLebesgue integrable mapping on each compact
subset of [0,+<)
For all €20, we have:

j;(p(t)dt =0

Corollary 4: Let T and S satisfy the conditions of
Theorem 1, except that condition (1) be replaced by the
following:
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There exists a @€Y such that:

(23)

AT Sy) < (At sy) + digy o) = [0 ptnar

0

Then, T, S, f and g have a umique common fixed
point.

Proof: Consider the function @(X):J'“(P(t)dt . Then Eq. 23
changes to the following: ’

d(Tx,8y) Sé(d(ﬁhsy) +d{gy,Tx)) — ©{d{d(fx,8y),d(2y,Tx)))

and putting ¥ = ®¢ and applying Theorem 1, we obtain
the proof (it 1s easy to verify that Te€).

Corollary 5: If mn the above corollary, Eq. 23 be replaced
by the following:

dgy Tx)

d(Tx.5y) = (dEx55)+ gy, T - o], @)de)

1}

@ltyd, |

0
then the result of corollary 4 is also hold.
Proof: Assume that:
O(x) = _[D"cp(t)dt
Then the above condition will be the followmg:
d(Tx,8y) S%(d(fX,SY) +d(gy. Tx}) - $(D(d(fx,8y)), D(d(gy, Tx}))
Taking,
W)= 0(P(x), D))

and applying Theorem 1, we obtain the proof (it is
obvious that ¥<Q).

As inNashine and Sarmet (2011), let NeN be fixed. Let

{0} ...y be a family of N fimctions which belong to Y. For
all t=0, we define:

L= m()ds,

10 - [ 600 [ g,

t
I uml(S)dsq;Z(s)ds
@;(s)ds = ID 5 P, (s)ds,

It
L{t)= IDZ '
I, (t)= IUI(N_”(O(pN(s)ds

We have the following result.
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Corollary 6: Let T and S satisfy the conditions of
Theorem 1 and condition (1) be substituted by the
following:

There exists a ¢p<T such that:

d(Tx,5y) s%(d(fx,sw + d(gy Tx)) ~ T (6(d(Bx, Sy ), d(gy, Ty (24)

Then, T, S, f and g have a unique common fixed
point.

Proof: Consider the function P (x,y) = L;p(x,y). Then the
inequality 24 will be:

d{Tx,8y) s%(d(fx,Sy) + d{gy. Tx)) — ¥(difx,8y).d{gy.Tx))

applying Theorem 1, we obtain the desired result (it 1s
easy to verify that ¥eQ).

Corollary 7: Let T and S satisfy the conditions of
Theorem 1, except that condition (1) be replaced by the
following:

There exists a ¢ such that:

d(Tx,8y) S%(d(fx,SY) + d(gy, Tx)) - $(T,; (d(Bx,89)). I, (d(gy. Tx)))

Then, T, 8, f and g have a unique common fixed
point.

Proof: Tet P(xy) = ¢b(I(x)I,(y)). Then the above
nequality will be changed to:

d{Tx,8y) s%(d(fx,Sy) + d{gy. Tx)) — ¥(difx,8y).d{gy.Tx))

Using Theorem 1, we obtain the proof (it is easy to
show that ¥=Q).
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